Взаимосвязь биологической активности лекарственных препаратов с их строением. Драг-дизайн: как в современном мире создаются новые лекарства Локализация и механизмы действия лекарственных веществ

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Рисунок 1. Типы молекулярных мишеней для действия лекарственных средств .

Молекулярная мишень -- это молекула или молекулярный ансамбль, имеющий специфический центр связывания для биологически активного соединения. Молекулярная мишень может быть представлена мембранными белками, распознающими гормоны или нейротрансмиттеры (рецепторы), а также ионными каналами, нуклеиновыми кислотами, молекулами-переносчиками или ферментами. Как видно из Рисунка 2, не все лекарственные соединения воздействуют на рецепторы. Большинство лекарственных средств должны связаться с молекулярной мишенью, чтобы произвести эффект, но существуют и исключения. Уже в первых исследованиях эффектов лекарств на тканях животных в конце XIX в. стало ясно, что большинство ФАВ реализуют специфическое действие в определенных тканях, т.е. соединение, которое оказывает эффект на один тип ткани, может не влиять на другой; одно и то же вещество может оказывать совершенно разные эффекты на разные ткани. Например, алкалоид пилокарпин, как и нейротрансмиттер ацетилхолин, вызывает сокращение гладких мышц кишечника и тормозит частоту сердечных сокращений. С учетом этих феноменов Сэмуэль Лэнгли (1852-1925) в 1878 г., основываясь на изучении эффектов алкалоидов пилокарпина и атропина на слюноотделение, предположил, что «существуют некие рецепторные вещества... с которыми оба могут образовывать соединения». Позже, в 1905 г., изучая действие никотина и кураре на скелетные мышцы, он обнаружил, что никотин вызывает сокращения, когда действует на определенные небольшие участки мышц. Лэнгли заключил, что «рецепторная субстанция» для никотина находится в этих участках и что кураре действует путем блокады взаимодействия никотина с рецептором .


Рисунок 2. Эффективность по отношению к эндогенному агонисту.

Таким образом, очевидно, что действие некоторых соединение может быть обусловлено не столько развитием биологического ответа на связывание с молекулярной мишенью, сколько препятствием связыванию эндогенного лиганда. Действительно, если рассматривать взаимодействие лиганда и рецептора, можно отметить, что существующие в настоящее время лекарственные соединения могут играть роль как агониста, так и антагониста. На Рисунке 3 можно увидеть более подробную классификацию лигандов по отношению к эффектам, ими обусловленными. Агонисты различаются по силе и направлению физиологического ответа, вызываемого ими. Данная классификация не связана с аффинностью лигандов и опирается лишь на величину отклика рецептора. Таким образом, можно выделить следующие классы агонистов:

o Суперагонист -- соединение, способное вызывать более сильный физиологический ответ, чем эндогенный агонист.

o Полный агонист -- соединение, вызывающее такой же отклик, как эндогенный агонист (например, изопреналин, агонист в-адренорецепторов).

o В случае меньшего отклика соединение называют частичным агонистом (например, арипипразол -- частичный агонист дофаминовых и серотониновых рецепторов).

o В случае если у рецептора имеется базальная (конститутивная) активность, некоторые вещества -- обратные агонисты -- могут уменьшать её. В частности, обратные агонисты рецепторов ГАМК A обладают анксиогенным или спазмогеннымдействием, однако могут усиливать когнитивные способности .

Рассматривая механизм связывания лиганда и рецепторной молекулы, можно увидеть, что специфичность и сила связывания обусловлена особенностями строения обоих компонентов. В частности, важную роль играет активный центр белков - определённый участок белковой молекулы, как правило, находящийся в её углублении ("кармане"), сформированный радикалами аминокислот, собранных на определённом пространственном участке при формировании третичной структуры и способный комплементарно связываться с лигандом. В линейной последовательности полипептидной цепи радикалы, формирующие активный центр, могут находиться на значительном расстоянии друг от друга.

Высокая специфичность связывания белка с лигандом обеспечивается комплементарностью структуры активного центра белка структуре лиганда. Под комплементарностью понимают пространственное и химическое соответствие взаимодействующих молекул. Лиганд должен обладать способностью входить и пространственно совпадать с конформацией активного центра. Это совпадение может быть неполным, но благодаря конформационной лабильности белка активный центр способен к небольшим изменениям и "подгоняется" под лиганд. Кроме того, между функциональными группами лиганда и радикалами аминокислот, образующих активный центр, должны возникать связи, удерживающие лиганд в активном центре. Связи между лигандом и активным центром белка могут быть как нековалентными (ионными, водородными, гидрофобными), так и ковалентными. Активный центр белка - относительно изолированный от окружающей белок среды участок, сформированный аминокислотными остатками. В этом участке каждый остаток благодаря своему индивидуальному размеру и функциональным группам формирует "рельеф" активного центра.

Объединение таких аминокислот в единый функциональный комплекс изменяет реакционную способность их радикалов, подобно тому, как меняется звучание музыкального инструмента в ансамбле. Поэтому аминокислотные остатки, входящие в состав активного центра, часто называют "ансамблем" аминокислот.

Уникальные свойства активного центра зависят не только от химических свойств формирующих его аминокислот, но и от их точной взаимной ориентации в пространстве. Поэтому даже незначительные нарушения общей конформации белка в результате точечных изменений его первичной структуры или условий окружающей среды могут привести к изменению химических и функциональных свойств радикалов, формирующих активный центр, нарушать связывание белка с лигандом и его функцию. При денатурации активный центр белков разрушается, и происходит утрата их биологической активности.

Часто активный центр формируется таким образом, что доступ воды к функциональным группам его радикалов ограничен, т.е. создаются условия для связывания лиганда с радикалами аминокислот.

В некоторых случаях лиганд присоединяется только к одному из атомов, обладающему определённой реакционной способностью, например присоединение О 2 к железу миоглобина или гемоглобина. Однако свойства данного атома избирательно взаимодействовать с О 2 определяются свойствами радикалов, окружающих атом железа в составе тема. Гем содержится и в других белках, таких как цитохромы. Однако функция атома железа в цитохромах иная, он служит посредником для передачи электронов от одного вещества другому, при этом железо становится то двух-, то трёхвалентным.

Центр связывания белка с лигандом часто располагается между доменами. Например, протеолитический фермент трипсин, участвующий в гидролизе пептидных связей пищевых белков в кишечнике, имеет 2 домена, разделённых бороздкой. Внутренняя поверхность бороздки формируется аминокислотными радикалами этих доменов, стоящими в полипептидной цепи далеко друг от друга (Сер 177 , Гис 40 , Асп 85).

Разные домены в белке могут перемещаться друг относительно друга при взаимодействии с лигандом, что облегчает дальнейшее функционирование белка. В качестве примера можно рассмотреть работу гексокиназы, фермента, катализирующего перенос фосфорного остатка с АТФ на молекулу глюкозы (при её фосфорилировании). Активный центр гексокиназы располагается в расщелине между двумя доменами. При связывании гексокиназы с глюкозой окружающие её домены сближаются, и субстрат оказывается в "ловушке", что облегчает его дальнейшее фосфорилирование.

Основное свойство белков, лежащее в основе их функций, - избирательность присоединения к определённым участкам белковой молекулы специфических лигандов.

Классификация лигандов

· Лигандами могут быть неорганические (часто ионы металлов) и органические вещества, низкомолекулярные и высокомолекулярные вещества;

· существуют лиганды, которые изменяют свою химическую структуру при присоединении к активному центру белка (изменения субстрата в активном центре фермента);

· существуют лиганды, присоединяющиеся к белку только в момент функционирования (например, О 2 , транспортируемый гемоглобином), и лиганды, постоянно связанные с белком, выполняющие вспомогательную роль при функционировании белков (например, железо, входящее в состав гемоглобина).

В тех случаях, когда аминокислотные остатки, формирующие активный центр, не могут обеспечить функционирование данного белка, к определённым участкам активного центра могут присоединяться небелковые молекулы. Так, в активном центре многих ферментов присутствует ион металла (кофактор) или органическая небелковая молекула (кофермент). Небелковую часть, прочно связанную с активным центром белка и необходимую для его функционирования, называют"простатическая группа". Миоглобин, гемоглобин и цитохромы имеют в активном центре простетическую группу - гем, содержащий железо.

Соединение протомеров в олигомерном белке - пример взаимодействия высокомолекулярных лигандов. Каждый протомер, соединённый с другими протомерами, служит для них лигандом, так же как они для него.

Иногда присоединение какого-либо лиганда изменяет конформацию белка, в результате чего формируется центр связывания с другими лигандами. Например, белок кальмодулин после связывания с четырьмя ионами Са 2+ в специфических участках приобретает способность взаимодействовать с некоторыми ферментами, меняя их активность .

Важным понятием в теории взаимодействия лиганда и активного центра биологической мишени является «комплементарность». Активный центр фермента должен определенным образом соответствовать лиганду, что отражается в некоторых требованиях, предъявляемых к субстрату.

Рисунок 3. Схема взаимодействия лиганда и молекулярной мишени.

Так, например, ожидаемо, что для успешного взаимодействия необходимо соответствие размеров активного центра и лиганда (см. 2 положение на рисунке 3), что позволяет повысить специфичность взаимодействия и оградить активный центр от заведомо неподходящих субстратов. Вместе с тем, при возникновении комплекса «активный центр-лиганд» возможны следующие виды взаимодействий:

· вандерваальсовы связи (положение 1, рисунок 3), обусловленые флуктуациями электронных облаков вокруг противоположно поляризованных соседних атомов;

· электростатические взаимодействия (положение 3, рисунок 3), возникающие между противоположно заряженными группами;

· гидрофобные взаимодействия (положение 4, рисунок 3), обусловленные взаимным притяжением неполярных поверхностей;

· водородные связи (положение 5, рисунок 3), возникающие между подвижным атомом водорода и электроотрицательными атомами фтора, азота или кислорода.

Несмотря на относительно малую силу описанных взаимодействий (в сравнении с ковалентными связями), не стоит недооценивать их важность, отражающуюся в повышении аффинности связывания.

Обобщая вышесказанное, можно отметить, что процесс связывания лиганда и молекулярной мишени представляет собой высокоспецифический процесс, контролируемый как размером лиганда, так и его строением, что позволяет обеспечить селективность взаимодействия. Тем не менее, возможно взаимодействие между белком и не свойственным ему субстратом (т.н. конкурентное ингибирование), которое выражается в связывании с активного центра со схожим, но не целевым лигандом. Стоит отметить, что конкурентное ингибирование возможно как в естественных условиях (ингибирование малонатом фермента сукцинатдегидрогеназы, ингибирование фумаратгидратазы пиромеллитовой кислотой ), так и искусственно, во время приема лекарственных средств (ингибирование моноаминооксидазы ипрониазидом, ниаламидом, ингибирование дигидроптероатсинтетазы сульфаниламидами - структурными аналогами пара-аминобензойной кислоты, ингибирование ангиотензинпревращающего фермента каптоприлом, эналаприлом).

Таким образом, существует возможность целенаправленного изменения активности многих молекулярных систем при помощи синтетических соединений, имеющих строение, схожее с естественными субстратами.

Тем не менее, поверхностное понимание механизмов взаимодействия лигандов и молекулярных мишеней может быть чрезвычайно опасно и, зачастую, приводить к трагическим последствиям. Наиболее известным случаем можно считать т.н. «талидомидовую трагедию», которая привела вследствие приема беременными женщинами недостаточно изученного лекарственного соединения талидомида к рождение тысяч детей с врожденными уродствами.

2. Местное и резорбтивное действие лекарственных средств

Действие вещества, проявляющееся на месте его приложения, называют местным. Например, обволакивающие средства покрывают слизистую оболочку, препятствуя раздражению окончаний афферентных нервов. Однако истинно местное действие наблюдается очень редко, так как вещества могут либо частично всасываться, либо оказывать рефлекторное влияние.

Действие вещества, развивающееся после его всасывания и поступления в общий кровоток, а затем в ткани, называют резорбтивным. Резорбтивное действие зависит от путей введения лекарственного вещества и его способности проникать через биологические барьеры.

При местном и резорбтивном действии лекарственные средства оказывают либо прямое, либо рефлекторное влияние. Прямое влияние реализуется на месте непосредственного контакта вещества с тканью. При рефлекторном воздействии вещества влияют на экстеро– или интерорецепторы, поэтому эффект проявляется изменением состояния либо соответствующих нервных центров, либо исполнительных органов. Так, использование горчичников при патологии органов дыхания рефлекторно улучшает их трофику (через экстерорецепторы кожи).

Лекция 6. Основные вопросы фармакодинамики (часть 1)

Основная задача фармакодинамики – выяснить, где и как действуют лекарственные вещества, вызывая те или иные эффекты, то есть установить мишени, с которыми взаимодействуют лекарства.

1. Мишени лекарственных средств

В качестве мишеней лекарственных средств выступают рецепторы, ионные каналы, ферменты, транспортные системы, гены. Рецепторами называют активные группировки макромолекул субстратов, с которыми взаимодействует вещество. Рецепторы, обеспечивающие проявление действия вещества, называют специфическими.

Выделяют 4 типа рецепторов:

рецепторы, осуществляющие прямой контроль за функцией ионных каналов (Н– холинорецепторы, Г АМК А -рецепторы);

рецепторы, сопряженные с эффектором через систему «G-белки-вторичные передатчики» или «G-белки-ионные каналы». Такие рецепторы имеются для многих гормонов и медиаторов (М– холинорецепторы, адренорецепторы);

рецепторы, осуществляющие прямой контроль функции эффекторного фермента. Они непосредственно связаны с тирозинкиназой и регулируют фосфорилирование белков (рецепторы инсулина);

рецепторы, осуществляющие транскрипцию ДНК. Это внутриклеточные рецепторы. С ними взаимодействуют стероидные и тиреоидные гормоны.

Сродство вещества к рецептору, приводящее к образованию с ним комплекса «вещество– рецептор», обозначается термином «аффинитет». Способность вещества при взаимодействии со специфическим рецептором стимулировать его и вызывать тот или иной эффект называется внутренней активностью.

2. Понятие о веществах-агонистах и антагонистах

Вещества, которые при взаимодействии со специфическими рецепторами вызывают в них изменения, приводящие к биологическому эффекту, называют агонистами. Стимулирующее действие агониста на рецепторы может приводить к активации или угнетению функции клетки. Если агонист, взаимодействуя с рецепторами, вызывает максимальный эффект, то это полный агонист. В отличие от последнего частичные агонисты при взаимодействии с теми же рецепторами не вызывают максимального эффекта.

Вещества, связывающиеся с рецепторами, но не вызывающие их стимуляции, называют антагонистами. Их внутренняя активность равна нулю. Их фармакологические эффекты обусловлены антагонизмом с эндогенными лигандами (медиаторами, гормонами), а также с экзогенными веществами-агонистами. Если они оккупируют те же рецепторы, с которыми взаимодействуют агонисты, то речь идет о конкурентных антагонистах; если другие участки макромолекулы, не относящиеся к специфическому рецептору, но взаимосвязанные с ним, то говорят о неконкурентных антагонистах.

Если вещество действует как агонист на один подтип рецепторов и как антагонист – на другой, оно обозначается как агонист-антагонист.

Выделяют и так называемые неспецифические рецепторы, связываясь с которыми вещества не вызывают возникновения эффекта (белки плазмы крови, мукополисахариды соединительной ткани); их еще называют местами неспецифического связывания веществ.

Взаимодействие «вещество – рецептор» осуществляется за счет межмолекулярных связей. Один из наиболее прочных видов связи – ковалентная связь. Она известна для небольшого количества препаратов (некоторые противобластомные вещества). Менее стойкой является более распространенная ионная связь, типичная для ганглиоблокаторов и ацетилхолина. Важную роль играют вандерваальсовы силы (основа гидрофобных взаимодействий) и водородные связи.

В зависимости от прочности связи «вещество – рецептор» различают обратимое действие, характерное для большинства веществ, и необратимое действие (в случае ковалентной связи).

Если вещество взаимодействует только с функционально однозначными рецепторами определенной локализации и не влияет на другие рецепторы, то действие такого вещества считают избирательным. Основой избирательности действия является сродство (аффинитет) вещества к рецептору.

Другой важной мишенью лекарственных веществ являются ионные каналы. Особый интерес представляет поиск блокаторов и активаторов Са 2 +-каналов с преимущественным влиянием на сердце и сосуды. В последние годы большое внимание привлекают вещества, регулирующие функцию К+-каналов.

Важной мишенью многих лекарственных веществ являются ферменты. Например, механизм действия нестероидных противовоспалительных средств обусловлен ингибированием циклооксигеназы и снижением биосинтеза простогландинов. Антибластомный препарат метотрексат блокирует дигидрофолатредуктазу, препятствуя образованию тетрагидрофолата, необходимого для синтеза пуринового нуклеотида-тимидилата. Ацикловир ингибирует вирусную ДНК-полимеразу.

Еще одна возможная мишень лекарственных средств – транспортные системы для полярных молекул, ионов и мелких гидрофильных молекул. Одно из последних достижений в этом направлении – создание ингибиторов пропионового насоса в слизистой оболочке желудка (омепразол).

Важной мишенью многих лекарственных веществ считаются гены. Исследования в области генной фармакологии получают все более широкое распространение.

Лекция 7. Зависимость фармакотерапевтического эффекта от свойств лекарственных средств и условий их применения

1. Химическое строение

I. Химическое строение, физико-химические и физические свойства лекарственных средств. Для эффективного взаимодействия вещества с рецептором необходима такая структура лекарственного средства, которая обеспечивает наиболее тесный контакт его с рецептором. От степени сближения вещества с рецептором зависит прочность межмолекулярных связей. Для взаимодействия вещества с рецептором особенно важно их пространственное соответствие, т. е. комплементарность. Это подтверждается различиями в активности стереоизомеров. Если вещество имеет несколько функционально активных группировок, то необходимо учитывать расстояние между ними.

Многие количественные и качественные характеристики действия вещества зависят также от таких физических и физико-химических свойств, как растворимость в воде и липидах; для порошкообразных соединений очень важна степень их измельчения, для летучих веществ – степень летучести и т. д.

2. Дозы и концентрации

II. В зависимости от дозы (концентрации) меняются скорость развития эффекта, его выраженность, продолжительность, а иногда и характер действия. Обычно с повышением дозы уменьшается латентный период и увеличиваются выраженность и длительность эффекта.

Дозой называют количество вещества на один прием (разовая доза). Обозначают дозу в граммах или долях грамма. Минимальные дозы, в которых лекарственные средства вызывают начальный биологический эффект, называют пороговыми, или минимальными, действующими дозами. В практической медицине чаще всего используют средние терапевтические дозы, в которых препараты у подавляющего большинства больных оказывают необходимое фармакотерапевтическое действие. Если при их назначении эффект недостаточно выражен, дозу увеличивают до высшей терапевтической. Кроме того, выделяют токсические дозы, в которых вещества вызывают опасные для организма токсические эффекты, и смертельные дозы. В некоторых случаях указывается доза препарата на курс лечения (курсовая доза). Если возникает необходимость быстро создать высокую концентрацию лекарственного вещества в организме, то первая доза (ударная) превышает последующие.

3. Повторное применение лекарственных средств Химическое строение

III. Увеличение эффекта ряда веществ связано с их способностью к кумуляции. Под материальной кумуляцией имеют в виду накопление в организме фармакологического вещества. Это типично для длительно действующих препаратов, которые медленно выводятся или прочно связываются в организме (например, некоторые сердечные гликозиды из группы наперстянки). Накопление вещества при его повторном употреблении может быть причиной развития токсических эффектов. В связи с этим дозировать такие препараты нужно с учетом кумуляции, постепенно уменьшая дозу или увеличивая интервалы между приемами препарата.

Известны примеры функциональной кумуляции, при которой накапливается эффект, а не вещество. Так, при алкоголизме нарастающие изменения ЦНС приводят к возникновению белой горячки. В данном случае вещество (этиловый спирт) быстро окисляется и в тканях не задерживается. Суммируются при этом лишь нейротропные эффекты.

Снижение эффективности веществ при их повторном применении – привыкание (толерантность) – наблюдается при использовании различных препаратов (анальгетики, гипотензивные и слабительные вещества). Оно может быть связано с уменьшением всасывания вещества, увеличением скорости его инактивации и (или) повышением выведения, снижением чувствительности к нему рецепторов или уменьшением их плотности в тканях. В случае привыкания для получения исходного эффекта дозу препарата надо повышать или одно вещество заменить другим. При последнем варианте следует учитывать, что существует перекрестное привыкание к веществам, взаимодействующим с теми же рецепторами. Особым видом привыкания является тахифилаксия – привыкание, возникающее очень быстро, иногда после однократного приема препарата.

По отношению к некоторым веществам (обычно нейротропным) при их повторном введении развивается лекарственная зависимость. Она проявляется непреодолимым стремлением к приему вещества, обычно с целью повышения настроения, улучшения самочувствия, устранения неприятных переживаний и ощущений, в том числе возникающих при отмене веществ, вызывающих лекарственную зависимость. В случае психической зависимости прекращение введения препарата (кокаин, галлюциногены) вызывает лишь эмоциональный дискомфорт. При приеме некоторых веществ (морфин, героин) развивается физическая зависимость. Отмена препарата в данном случае вызывает тяжелое состояние, которое, помимо резких психических изменений, проявляется разнообразными, часто тяжелыми соматическими нарушениями, связанными с расстройством функции многих систем организма вплоть до смертельного исхода. Это так называемый синдром абстиненции.

Лекция 8. Взаимодействие лекарственных средств (часть 1)

1. Основные виды взаимодействия лекарственных препаратов

При одновременном назначении нескольких лекарственных веществ возможно их взаимодействие друг с другом, приводящее к изменению выраженности и характера основного эффекта, его продолжительности, а также к усилению или ослаблению побочных и токсических влияний. Взаимодействие лекарственных средств обычно подразделяют на фармакологическое и фармацевтическое .

Фармакологическое взаимодействие основано на изменении фармакокинетики и фармакодинамики лекарственных средств, химическом и физико-химическом взаимодействии лекарственных средств в средах организма.

Фармацевтическое взаимодействие связано с комбинациями различных лекарственных средств, нередко используемых для усиления или сочетания эффектов, полезных в медицинской практике. Вместе с тем при сочетании веществ может возникать и неблагоприятное взаимодействие, которое обозначается как несовместимость лекарственных средств. Проявляется несовместимость ослаблением, полной утратой или изменением характера фармакотерапевтического эффекта либо усилением побочного или токсического действия. Это происходит при одновременном назначении двух или более лекарственных средств (фармакологическая несовместимость). Несовместимость возможна также при изготовлении и хранении комбинированных препаратов (фармацевтическая несовместимость).

2. Фармакологическое взаимодействие

I. Фармакокинетический тип взаимодействия может проявляться уже на этапе всасывания вещества, которое может изменяться по разным причинам. Так, в пищеварительном тракте возможны связывание веществ адсорбентами (активированным углем, белой глиной) или анионообменными смолами (холестирамин), образование неактивных хелатных соединений или комплексонов (по такому принципу взаимодействуют антибиотики группы тетрациклина с ионами железа, кальция и магния). Все эти варианты взаимодействия препятствуют всасыванию лекарственных средств и уменьшают их фармакотерапевтические эффекты. Для всасывания ряда веществ из пищеварительного тракта важное значение имеет величина рН среды. Так, изменяя реакцию пищеварительных соков, можно существенно влиять на скорость и полноту абсорбции слабокислых и слабощелочных соединений.

Изменение перистальтики пищеварительного тракта также сказывается на всасывании веществ. Например, повышение холиномиметиками перистальтики кишечника снижает всасывание дигоксина. Кроме того, известны примеры взаимодействия веществ на уровне их транспорта через слизистую оболочку кишечника (барбитураты уменьшают всасывание гризеофульвина.

Угнетение активности ферментов также может влиять на всасывание. Так, дифенин ингибирует фолатдеконъюгазу и нарушает всасывание фолиевой кислоты из пищевых продуктов. В результате развивается недостаточность фолиевой кислоты. Некоторые вещества (алмагель, вазелиновое масло) образуют слои на поверхности слизистой оболочки пищеварительного тракта, что может несколько затруднять всасывание лекарственных средств.

Взаимодействие веществ возможно на этапе их транспорта с белками крови. В этом случае одно вещество может вытеснять другое из комплекса с белками плазмы крови. Так, индометацин и бутадион высвобождают из комплекса с белками плазмы антикоагулянты непрямого действия, что повышает концентрацию свободных антикоагулянтов и может привести к кровотечению.

Некоторые лекарственные вещества способны взаимодействовать на уровне биотрансформации веществ. Есть препараты, которые повышают (индуцируют) активность микросомальных ферментов печени (фенобарбитал, дифенин и др.). На фоне их действия биотрансформация многих веществ протекает более интенсивно.

Это снижает выраженность и продолжительность их эффекта. Возможно также взаимодействие лекарственных средств, связанное с ингибирующим влиянием на микросомальные и немикросомальные ферменты. Так, противоподагрический препарат аллопуринол повышает токсичность противоопухолевого препарата меркаптопурина.

Выведение лекарственных веществ также может существенно изменяться при комбинированном применении веществ. Реабсорбция в почечных канальцах слабокислых и слабощелочных соединений зависит от значения рН первичной мочи. Изменяя ее реакцию, можно повысить или понизить степень ионизации вещества. Чем меньше степень ионизации вещества, тем выше его липофильность и тем интенсивнее протекает реабсорбция в почечных канальцах. Более ионизированные вещества плохо реабсорбируются и в большей степени выделяются с мочой. Для подщелачивания мочи используется натрия гидрокарбонат, а для подкисления – аммония хлорид.

Следует иметь в виду, что при взаимодействии веществ их фармакокинетика может меняться на нескольких этапах одновременно.

II. Фармакодинамический тип взаимодействия. Если взаимодействие осуществляется на уровне рецепторов, то оно в основном касается агонистов и антагонистов различных типов рецепторов.

В случае синергизма взаимодействие веществ сопровождается усилением конечного эффекта. Синергизм лекарственных веществ может проявляться простым суммированием или потенциированием конечного эффекта. Суммированный (аддитивный) эффект наблюдается при простом сложении эффектов каждого из компонентов. Если при введении двух веществ общий эффект превышает сумму эффектов обоих веществ, то это свидетельствует о потенцировании.

Синергизм может быть прямой (если оба соединения действуют на один субстрат) или косвенный (при разной локализации их действия).

Способность одного вещества в той или иной степени уменьшать эффект другого называют антагонизмом. По аналогии с синергизмом он может быть прямым и косвенным.

Кроме того, выделяют синергоантагонизм, при котором одни эффекты комбинируемых веществ усиливаются, а другие ослабляются.

III. Химическое или физико-химическое взаимодействие веществ в средах организма чаще всего используется при передозировке или остром отравлении лекарственными средствами. При передозировке антикоагулянта гепарина назначают его антидот – протамина сульфат, который инактивирует гепарин за счет электростатического взаимодействия с ним (физико-химическое взаимодействие). Примером химического взаимодействия является образование комплексонов. Так, ионы меди, ртути, свинца, железа и кальция связывают пеницилламин.

Лекция 9. Взаимодействие лекарственных средств (часть 2)

1. Фармацевтическое взаимодействие

Возможны случаи фармацевтической несовместимости, при которой в процессе изготовления препаратов и (или) их хранения, а также при смешивании в одном шприце происходит взаимодействие компонентов смеси и наступают такие изменения, в результате которых препарат становится непригодным для практического использования. В некоторых случаях появляются новые, иногда неблагоприятные (токсические) свойства. Несовместимость может быть обусловлена недостаточной растворимостью или полной нерастворимостью веществ в растворителе, коагуляцией лекарственных форм, расслоением эмульсии, отсыреванием и расплавлением порошков в связи с их гигроскопичностью, возможна нежелательная абсорбция активных веществ. В неправильных рецептурных прописях в результате химического взаимодействия веществ иногда образуется осадок или изменяются цвет, вкус, запах и консистенция лекарственной формы.

2. Значение индивидуальных особенностей организма и его состояния для проявления действия лекарственных средств

I. Возраст. Чувствительность к лекарственным средствам меняется в зависимости от возраста. В связи с этим в качестве самостоятельной дисциплины выделилась перинатальная фармакология, исследующая особенности влияния лекарственных средств на плод (за 24 недели до родов и до 4 недель после рождения). Раздел фармакологии, изучающий особенности действия лекарственных препаратов на детский организм, называется педиатрической фармакологией.

Для лекарственных веществ (кроме ядовитых и сильнодействующих) существует упрощенное правило расчета веществ для детей разного возраста, исходящее из того, что на каждый год ребенка требуется 1/20 дозы взрослого.

В пожилом и старческом возрасте замедляется всасывание лекарственных веществ, менее эффективно протекает их метаболизм, снижается скорость экскреции препаратов почками. Выяснением особенностей действия и применения лекарственных средств у лиц пожилого и старческого возраста занимается гериатрическая фармакология.

II. Пол. К ряду веществ (никотин, стрихнин) мужские особи менее чувствительны, чем женские.

III. Генетические факторы. Чувствительность к лекарственным средствам может быть обусловлена генетически. Например, при генетической недостаточности холинэстеразы плазмы крови длительность действия миорелаксанта дитилина резко возрастает и может достигать 6–8 ч (в нормальных условиях – 5–7 мин.).

Известны примеры атипичных реакций на вещества (идиосинкразия). Например, противомалярийные средства из группы 8-аминохинолина (примахин) у лиц с генетической энзимопатией могут вызвать гемолиз. Известны и другие вещества с потенциальным гемолитическим действием: сульфаниламиды (стрептоцид, сульфацил-натрий), нитрофураны (фуразолидон, фурадонин), ненаркотические анальгетики (аспирин, фенацетин).

IV. Состояние организма. Жаропонижающие средства действуют только при лихорадке (при нормотермии они неэффективны), а сердечные гликозиды – только на фоне сердечной недостаточности. Заболевания, сопровождающиеся нарушением функции печени и почек, изменяют биотрансформацию и экскрецию веществ. Фармакокинетика лекарственных средств также изменяется при беременности и ожирении.

V. Значение суточных ритмов. Исследование зависимости фармакологического эффекта лекарственных препаратов от суточного периодизма является одной из основных задач хронофармакологии. В большинстве случаев наиболее выраженный эффект веществ отмечается в период максимальной активности. Так, у человека действие морфина более выражено в начале второй половины дня, чем утром или ночью.

Фармакокинетические параметры тоже зависят от суточных ритмов. Наибольшее всасывание гризеофульвина происходит примерно в 12 ч дня. В течение суток существенно меняются интенсивность метаболизма веществ, функция почек и их способность экскретировать фармакологические вещества.

Основная задача фармакодинамики - выяснить, где и каким образом действуют лекарственные средства, вызывая те или иные эффекты. Благодаря усовершенствованию методических приемов эти вопросы решаются не только на системном и органном, но и на клеточном, субклеточном, молекулярном и субмолекулярном уровнях. Так, для нейротропных средств устанавливают те структуры нервной системы, синаптические образования которых обладают наиболее высокой чувствительностью к данным соединениям. Для веществ, влияющих на метаболизм, определяется локализация ферментов в разных тканях, клетках и субклеточных образованиях, активность которых изменяется особенно существенно. Во всех случаях речь идет о тех биологических субстратах-«мишенях», с которыми взаимодействует лекарственное вещество.

«Мишени» для ЛС

В качестве «мишеней» для лекарственных средств служат рецепторы, ионные каналы, ферменты, транспортные системы и гены.

Рецепторами называют активные группировки макромолекул субстратов, с которыми взаимодействует вещество. Рецепторы, обеспечивающие проявление действия веществ, называют специфическими.

Выделяют следующие 4 типа рецепторов (рис.

I. Рецепторы, осуществляющие прямой контроль за функцией ионных каналов. К этому типу рецепторов, непосредственно сопряженных с ионными каналами, относятся н-холинорецепторы, ГАМКА-рецепторы, глутаматные рецепторы.

II. Рецепторы, сопряженные с эффектором через систему «G-белки - вторичные передатчики» или «G-белки-ионные каналы». Такие рецепторы имеются для многих гормонов и медиаторов (м-холинорецепторы, адренорецепторы).

III. Рецепторы, осуществляющие прямой контроль функции эффекторного фермента. Они непосредственно связаны с тирозинкиназой и регулируют фосфорилирование белков. По такому принципу устроены рецепторы инсулина, ряда факторов роста.

IV. Рецепторы, контролирующие транскрипцию ДНК. В отличие от мембранных рецепторов I-III типов, это внутриклеточные рецепторы (растворимые цитозольные или ядерные белки). С такими рецепторами взаимодействуют стероидные и тиреоидные гормоны.

Рассматривая действие веществ на постсинаптические рецепторы, следует отметить возможность аллостерического связывания веществ как эндогенного (например, глицин), так и экзогенного (например, анксиолитики бензодиазепинового ряда) происхождения. Аллостерическое взаимодействие с рецептором не вызывает «сигнала». Происходит, однако, модуляция основного медиаторного эффекта, который может как усиливаться, так и ослабляться. Создание веществ такого типа открывает новые возможности регуляции функций ЦНС. Особенностью нейромодуляторов аллостерического действия является то, что они не оказывают прямого действия на основную медиаторную передачу, а лишь видоизменяют ее в желаемом направлении.

Важную роль для понимания механизмов регуляции синаптической передачи сыграло открытие пресинаптических рецепторов. Были изучены пути гомотропной ауторегуляции (действие выделяющего медиатора на пресинаптические рецепторы того же нервного окончания) и гетеротропной регуляции (пресинаптическая регуляция за счет другого медиатора) высвобождения медиаторов, что позволило по-новому оценить особенности действия многих веществ. Эти сведения послужили также основой для целенаправленного поиска ряда препаратов (например, празозина).

Сродство вещества к рецептору, приводящее к образованию с ним комплекса «вещество-рецептор», обозначается термином «аффинитет». Способность вещества при взаимодействии с рецептором стимулировать его и вызывать тот или иной эффект называется внутренней активностью.


ятии:

  1. Носители генетической информации у микроорганизмов.

  2. Формы проявления изменчивости микроорганизмов. Модификации. Мутации, их классификация. R-S диссоциации. Практическое значение изменчивости микроорганизмов.

  3. Мутагены, классификация, механизм действия мутагенов на геном микроорганизмов.

  4. Роль цитоплазматических генетических структур в изменчивости микроорганизмов.

  5. Генетические рекомбинации.

  6. Трансформация, стадии процесса трансформации.

  7. Трансдукция, специфическая и неспецифическая трансдукция.

  8. Конъюгация, стадии процесса конъюгации.

1. Указать правильные ответы в тестовых заданиях.

1. Просмотр и зарисовка демонстрационных препаратов:

А) R-S диссоциация бактерий.

Контрольные вопросы:


  1. Что является материальной основой наследственности микроорганизмов?

  2. Какие существуют формы проявления изменчивости микроорганизмов?

  1. Каково практическое значение изменчивости микроорганизмов?

  2. Что такое модификации?

  3. Что такое мутации?

  4. Какая существует классификация мутаций?

  5. Что такое мутагены?

  6. Каков механизм действия мутагенов на геном микроорганизмов?

  1. Какова роль цитоплазматических генетических структур в изменчивости микроорганизмов?

  2. Что такое генетические рекомбинации?

  3. Что такое трансформация? Какие стадии выделяют в этом процессе?

  4. Что такое трансдукция?

  5. Что такое конъюгация? Какие стадии выделяют в этом процессе?

ТЕСТОВЫЕ З АДАНИЯ

Указать правильные отв еты:

1. Что относят к внехромосомным генетическим структурам?

А) рибосомы

Б) полисомы

В) плазмиды

Г) мезосомы

Д) транспозоны

2. Что такое мутагены?

А) гены, обеспечивающие мутацию

Б) факторы, вызывающие мутацию

В) факторы, передающие генетическую информацию

Г) факторы, восстанавливающие ДНК

3. Что такое экзон?

А) вирулентный бактериофаг

Б) профаг

В) участок гена, несущий определенную генетическую информацию

Г) умеренный бактериофаг

4. Что такое инверсия?

А) способ генетической рекомбинации

Б) исправление поврежденных участков ДНК

В) хромосомная мутация

Г) точковая мутация

5. Что такое модификация?

Б) фенотипические изменения, не затрагивающие генома клетки

В) передача генетического материала при помощи бактериофага

Г) наследственное скачкообразное изменение признака

6. Для конъюгации характерно:

А) передача генетического материала при помощи бактериофага

Б) необходим контакт клеток донора и реципиента

В) передача генетического материала с помощью РНК

Г) передача генетического материала с помощью полового фактора

7. Что такое репарация?

А) лизогения

Б) восстановление поврежденной ДНК

В) способ передачи генетической информации

Г) виропексис

8. Чем характеризуется «минус» цепь РНК?

А) обладает инфекционной активностью

Б) несет наследственную функцию

В) способна встраиваться в хромосому клетки

Г) не обладает функцией информационной РНК

9. У каких микроорганизмов материальной основой наследственности является РНК?

А) у бактерий

Б) у спирохет

Д) у микоплазм

10. Что такое мутации?

А) исправление поврежденных участков ДНК

Б) передача генетического материала при помощи бактериофага

В) наследственное скачкообразное изменение признака

Г) процесс образования бактериального потомства, содержащего признаки донора и реципиента

11. Что такое трансформация?

А) восстановление поврежденной ДНК

Б) передача генетической информации при контакте бактериальных клеток разной «половой» направленности

В) передача генетической информации с помощью фрагмента ДНК

Г) передача генетической информации от клетки донора клетке реципиента с помощью бактериофага

ИНФОРМАЦИОННЫЙ МАТ ЕРИАЛ ПО ТЕМЕ ЗАНЯТИЯ

Постановка опыта трансформации

Реципиент - штамм Bacillus subtilis Str (сенная палочка, чувствительная к стрептомицину); донор - ДНК, выделенная из штамма В. Subtilis Str (устойчивого к стрептомицину). Селективная среда для отбора рекомби-нантов (трансформантов) питательный агар, содержащий 100 ЕД/мл стрептомицина.

К 1 мл бульонной культуры В. Subtilis добавляют 1 мкг/мл раствора ДНКазы в 0,5 мл раствора хлорида магния для разрушения ДНК, не проникшей в бактериальные клетки реципиентного штамма, и выдерживают в течение 5 мин. Для определения количества образовавшихся стрептомицинустойчивых рекомбинантов (трансформантов) 0,1 мл неразведенной смеси высевают на селективную среду в чашку Петри. Для определения количества клеток реципиентной культуры в изотоническом растворе хлорида натрия готовят 10-кратные разведения до 10 -5 -10 -6 (для получения сосчитываемого количества колоний), высевают по 0,1 мл на питательный агар без стрептомицина, а для контроля - на агар со стрептомицином. На последней среде реципиентная культура не должна расти, поскольку она чувствительна к стрептомицину. Посев инкубируют, при 37 0 С. На следующий день учитывают результаты опыта и определяют частоту трансформации по отношению количества выросших рекомбинантных клеток к числу клеток реципиентного штамма.

Допустим, что при высеве 0,1 мл культуры реципи-ентного штамма в разведении 10 -5 выросло 170 колоний, а при высеве 0,1 мл неразведенной смеси - 68 колоний рекомбинантного штамма. Поскольку каждая колония образовалась в результате размножений только одной бактериальной клеткой, то в 0,1 мл засеянной культуры реципиента содержится 170 х 10 5 жизнеспособных клеток, а в 1 мл - 170 х 10 6 , или 1,7 х 10 8 . В то же время в 0,1 мл смеси находится 68 рекомбинантных клеток, а в 1 мл - 680, или 6,8 х 10 2 .

Таким образом, частота трансформации в данном опыте будет равна:

Постановка опыта специфической трансдукции

Реципиент - штамм Е. coli lac - , лишенный 3-галактозидазного оперона, контролирующего ферментацию лактозы. Трансдуцирующий фаг - фаг X dgal, в геноме которого часть генов замещена (3-галактозидазным опе-роном Е. coli. Он является дефектным, т. е. не способен вызывать продуктивную инфекцию, заканчивающуюся лизисом кишечной палочки, и обозначается буквой d (фаг dgal) с названием содержащегося в геноме бактериального оперона gal. Селективная среда - среда Эндо, на которой лактозоотрицательные бактерии реципиентного штамма образуют бесцветные колонии, а лактозоположительные колонии рекомбинантного штамма приобретают красный цвет с металлическим оттенком. К 1 мл 3-часовой бульонной культуры реципиентного штамма добавляют 1 мл трансдуцирующего фага dgal в концентрации 10 6 - 10 7 частиц в 1 мл. Смесь инкубируют в течение 60 мин при 37 0 С, после чего готовят ряд 10-кратных разведений (в зависимости от предполагаемой концентрации бактерий) для получения сосчитываемого количества колоний. Из пробирки с разведением 10 -6 делают высев по 0,1 мл культуры на 3 чашки Петри со средой Эндо и равномерно распределяют жидкость шпателем по поверхности среды.

Посевы инкубируют в течение 1 суток, после чего отмечают результаты опыта и вычисляют частоту трансдукции по отношению количества клеток рекомбинантов (транс-дуктантов), обнаруженных на всех чашках, к числу клеток реципиентного штамма.

Например, после посева 0,1 мл смешанной культуры в разведении 10 -6 на 3 чашках со средой Эндо выросло соответственно 138, 170 и 160 бесцветных колоний реципиентного штамма, на первой и последней чашках - 5 и 1 колонии трансдуктантов красного цвета. Следовательно, частота трансдукции в этом случае будет равна:


Постановка опыта конъюгации с целью передачи фрагмента хромосомы, кот орый содержит ген leu , контролирующий синтез лейцина.

Донор - штамм Е. coli K12 Hfr leu Str S ; реципиент - штамм Е. Coli K12 F - leu + Str R . Hfr - обозначение состояния, для которого характерна высокая частота рекомбинации. Селективная среда для выделения рекомбинантов -минимальная глюкозосолевая среда: КН 2 РО 4 - 6,5 г, MgSO 4 - 0,1 г, (NH 4)2SO 4 - 1 г, Ca(NO 3)2 - 0,001 г, FeSO 4 - 0,0005 г, глюкозы - 2 г, стрептомицина - 200 ЕД/мл, дистиллированной воды - 1 л.

К 2 мл 3-часовой культуры реципиента добавляют 1 мл бульонной культуры донора. Посевы инкубируют при 37 0 С в течение 30 мин. Затем смесь разводят до 10 -2 -10 3 и высевают по 0,1 мл на селективную агаровую среду в чашки Петри, на которой вырастут только колонии рекомбинантов. В качестве контроля на ту же среду высевают донорский и реципиентный штаммы, которые не будут расти на ней, т. к. первый штамм чувствителен к стрептомицину, а второй ауксотрофен по лейцину. Кроме того, культуру донорского штамма высевают на селективную среду без стрептомицина, а культуру реципиентного штамма - на полную среду (питательный агар) с антибиотиками для определения числа жизнеспособных клеток. Посевы инкубируют при 37 0 С до следующего дня. После подсчета числа выросших колоний определяют частоту рекомбинаций по отношению количества рекомбинантных клеток к реципиентным.

Например, после посева 0,1 мл смеси донорских и реципиентных культур в разведении 10 -2 выросло 150 колоний рекомбинантов, а после посева 0,1 мл культуры реципиента из разведения 10 -6 75 колоний. Таким образом, частота рекомбинации будет равна:


УЧЕБНО-ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА №7

Т е м а: Бактериологический метод ди агностики

инфекционных заболеваний. Питание бактерий. Принципы культивирования микроорганизмов. Питательные среды. Методы стерилизации

Учебная цель: Освоить бактериологический метод диагностики инфекционных заболеваний. Изучить типы питания бактерий, принципы культивирования микроорганизмов, классификацию питательных сред и методы стерилизации.

Необходимый исходный уровень знаний: Физиология микроорганизмов.

Практические знания и умения, которые должен получить студент на занятии:


Знать

Уметь

1. Бактериологический метод диагностики инфекционных заболеваний, его цель и этапы

1. Приготовить питательные среды

2. Типы питания бактерий

2. Оценить эффективность стерилизации и дезинфекции

3. Принципы культивирования микроорганизмов

4. Питательные среды, требования, предъявляемые к питательным средам

5. Классификация питательных сред, состав и приготовление

6. Методы стерилизации

7. Механизм действия стерилизующих факторов на молекулярную структуру микроорганизмов

8. Отличия понятий контаминации и деконтаминации, дезинфекции и стерилизации, асептики и антисептики

9. Классификация инструментов, приборов, способов обработки и видов воздействия

10. Современные технологии стерилизации и аппаратура

11. Способы контроля эффективности стерилизации и дезинфекции

Вопросы, рассматриваемые на зан ятии:


  1. Бактериологический метод диагностики инфекционных заболеваний, его цель и этапы.

  2. Типы питания бактерий.

  3. Принципы культивирования микроорганизмов.

  1. Питательные среды; требования, предъявляемые к питательным средам.

  2. Классификация питательных сред, их состав и приготовление.

  3. Методы стерилизации: физические, химические, биологические и механические.

  4. Микроб как объект стерилизации и дезинфекции. Связь со строением микробной клетки. Основные мишени молекулярной структуры микроорганизмов при стерилизующих и дезинфицирующих воздействиях.

  5. Отличия понятий контаминации и деконтаминации, дезинфекции и стерилизации, асептики и антисептики.

  6. Классификация инструментов, приборов, способов обработки и видов воздействия для стерилизации и дезинфекции.

  1. Современные технологии стерилизации и аппаратура.

  2. Способы контроля эффективности стерилизации и дезинфекции.

Самостоятельная работа студентов:

1. Опыт по определению действия высокой температуры (80°С) на спорообразующие (антракоид) и аспорогенные (кишечная палочка и стафилококк) микроорганизмы.

Преподаватель разъясняет опыт:

А) на каждый стол даётся взвесь стафилококка, кишечной палочки и споровой палочки (антракоида);

Б) делается посев каждой взвеси на косой агар до прогревания;

В) исследуемые взвеси помещаются на водяную баню при температуре 80 0 С на 20 минут;

Г) делается посев каждой взвеси на косой агар после прогревания;

Д) заполняется протокол по форме:

Вегетативные формы патогенных микроорганизмов погибают при 50-60 0 С в течении 30 минут, а при температуре 70 0 С в течении 5-10 минут. Споры бактерий обладают большей устойчивостью к высоким температурам, что объясняется содержанием в них воды в связанном состоянии, большим содержанием солей кальция, липидов и плотностью, многослойностью оболочки. Следовательно, стафилококк и кишечная палочка после прогревания погибают, а споры антракоида выживают. Это и надо учитывать в оценке результатов посева.

2. Заполнить самостоятельно таблицу:




Способ стерилизации

Аппарат

Надёжность

Стерилизуемый материал

1.

Стерилизация

в пламени


2.

Плазменная

Стерилизация


3.

Сухой жар

4.

Паром под давлением

5.

Текучим паром

6.

Тиндализация

7.

Фильтрование

8.

Физические факторы (УФЛ, гамма-лучи, ультразвук)

9.

Газовая стерилизация

10.

Пастеризация

3. Указать правильные ответы в тестовых заданиях.

Практическая работа студентов:

1. Просмотр демонстрационных препаратов и приборов:

А) питательных сред (МПБ, МПА, кровяной агар, сывороточный агар, среды Гисса, среда Эндо, среда Плоскирева);

Б) печи Пастера, автоклава.

Контрольные в опросы:


  1. Какие цели и этапы бактериологического метода диагностики инфекционных заболеваний?

  2. Что такое питание бактерий?

  3. Какие существуют типы питания бактерий?

  4. Каковы принципы культивирования микроорганизмов?

  5. Что такое питательные среды?

  6. Какие требования предъявляются к питательным средам?

  7. Какая существует классификация питательных сред?

  8. Как готовятся питательные среды?

  9. Что такое стерилизация?

  10. Какие существуют методы стерилизации?

  11. В чем разница между понятиями контаминация и деконтаминация, дезинфекция и стерилизация, асептика и антисептика?

  12. На какие клеточные структуры микроорганизмов действуют стерилизующие и дезинфицирующие факторы?

  13. Какая существует классификация инструментов, приборов, способов обработки и видов воздействия для стерилизации и дезинфекции?

  14. Какие известны современные технологии стерилизации и аппаратура?

  15. Какие используются способы контроля эффективности стерилизации и дезинфекции?

ТЕСТОВЫЕ ЗАДАНИЯ

Укажите правильные ответы:

1. Какие питательные среды являются простыми?

А) среда Эндо

В) кровяной агар

Д) пептонная вода

2. Что такое стерилизация?

А) полное обеспложивание объектов от всех видов микробов и их спор

Б) уничтожение патогенных микроорганизмов

В) уничтожение вегетативных форм микроорганизмов

Г) предотвращение попадания микроорганизмов в рану

Д) уничтожение на объектах конкретных видов микробов

3. Какие факторы используются при автоклавировании?

А) температура

Б) фильтры

Г) давление

4. Какие факторы используются в печи Пастера?

А) давление

В) сухой жар

Г) антибиотики

5. Питательные среды по назначению делятся на:

А) простые

Б) элективные

В) жидкие

Г) дифференциально-диагностические

Д) транспортные

6. По отношению к факторам роста микроорганизмы делятся на:

А) аутотрофы

Б) гетеротрофы

В) ауксотрофы

Г) литотрофы

Д) прототрофы

Е) органотрофы

7. Оптимальной температурой для выращивания большинства патогенных микроорганизмов является:

8. К физическим методам стерилизации относятся:

А) ультразвук

Б) ультрафиолетовые лучи

В) антибиотики

Г) фильтрование

Д) паровая стерилизация

Е) сухожаровая стерилизация

9. На рост бактерий влияют следующие условия культивирования:

Б) рН среды

В) температура

Г) влажность среды

Д) факторы роста

Е) все ответы неправильные

10. Плотность питательных сред зависит от содержания в них:

А) хлорида натрия

Б) пептона

В) агар-агара

Г) сахарозы

Д) сыворотки крови

11. Микробы, использующие неорганические источники углерода и окислительно-восстановительные реакции для получения энергии, называются:

А) хемоорганотрофами

Б) фотоорганотрофами

В) хемолитотрофами

Г) хемоаутотрофами

Д) хемоауксотрофами

12. Перечислите способы стерилизации, освобождающие объект от споровых форм микробов:

А) облучение ультрафиолетом

Б) автоклавирование

В) пастеризация

Г) сухим жаром

Д) гамма-облучение

13. Расположите в правильной последовательности процессы обработки лабораторного инстументария:

А) предстерилизационная очисткастерилизация

Б) предстерилизационная очисткастерилизациядезинфекция

В) предстерилизационная очисткадезинфекция-стерилизация

Г) дезинфекцияпредстерилизационная очисткастерилизация

14. Комплекс мероприятий, направленных на уничтожение патогенных микроорганизмов, называется:

А) асептика

Б) антисептика

В) дезинфекция

Г) стерилизация

Д) тиндализация

ИНФОРМАЦИОННЫЙ МАТЕРИАЛ ПО ТЕМЕ ЗАНЯТИЯ

Микробиологическое исследование проводится с целью выделения чистых культур микроорганизмов, культивирование и изучения их свойств. Оно необходимо при диагностике инфекционных болезней, для определения видовой принадлежности микробов, в исследовательской работе, для получения продуктов жизнедеятельности микробов (токсинов, антибиотиков, вакцин и т. п.). Для выращивания микроорганизмов в искусственных условиях необходимы особые субстраты - питательные среды. Они являются основой микробиологической работы и определяют результаты всего исследования. Среды должны создавать оптимальные условия для жизнедеятельности микробов.

ТРЕБОВАНИЯ, ПРЕД ЬЯВЛЯЕМЫЕ К СРЕДАМ:


  1. Должны быть питательными, т. е. содержать в легкоусвояемом виде все вещества, необходимые для удовлетворения пищевых и энергетических потребностей микроорганизмов.

  2. Иметь оптимальную концентрацию водородных ионов.

  3. Быть изотоничными для микробной клетки.

  4. Быть стерильными.

  5. Быть влажными.

  6. Обладать определённым окислительно-восстановительным потенциалом.

  7. Быть по возможности унифицированными.
Потребность в питательных веществах и свойствах среды у разных видов микроорганизмов неодинакова. Это исключает возможность создания универсальной среды. Кроме того, на выбор той или иной среды влияют цели исследования.

Группа

классификации


Класс

Примеры

По составу

Простые

Жидкие - МПБ, пептон-ная вода Пло тные - МПА

Сложные

Жидкие - сахарный бул ьон Плотные - сахарный агар, кровяной агар

По происхожде нию

Естественные

Молоко, свёрнутая сыв оротка, срез сырого картофеля

Искусственные

Молочно-солевой агар С ывороточный агар Асцит-агар Кровяной агар

Синтетические

Среда Игла, среда 199

По назначе нию

Селективные (элективные)

-для стафилококка:

-для грам(-) кокков и

дифтероидов:

-для энтеробактерий:

-для холерного вибриона:

-для лактобацилл и грибов


Молочно-солевой агар, жел-точно-солевой агар Сывороточные среды Среды с солями теллура Среды с солями желчных кислот

Пептонный бульон и ще лочной агар

Томат-агар, рисовый агар, агар Сабуро


По консисте нции

Дифференциально-диагностические

Универсальные

Среды обогащения

Консервирую щие

Жидкие

Полужидкие

Плотные


Эндо, Плоскирева, Левина, Ресселя, Гисса

МПБ, МПА, кровяной агар

Среда Мюллера

Среды с глицерином

МПБ, пептонная вода, сахарный МПБ

МПЖеле, желати новая

МПА, кровяной агар

Фармакодинамика - раздел клинической фармакологии, изучающий механизмы действия, характер, силу и длительность фармакологических эффектов ЛС, используемых в клинической практике.

Пути воздействия ЛС на организм человека

Большинство ЛС, связываясь с рецепторами или другими молекулами-мишенями, образуют комплекс «ЛС-рецептор», при этом происходит запуск определённых физиологических или биохимических процессов (или количественное их изменение) в организме человека. В таком случае говорят о прямом действии ЛС. Структура ЛС прямого действия, как правило, аналогична строению эндогенного медиатора (однако при взаимодействии ЛС и медиатора с рецептором нередко регистрируют различные эффекты).

Группы лекарственных средств

Для удобства примем величину эффекта эндогенного медиатора, связывающегося с рецептором, равной единице. Существует классификация ЛС, созданная на основе данного предположения.

Агонисты - ЛС, связывающиеся с теми же рецепторами, что и эндогенные медиаторы. Агонисты производят эффект, равный единице (или больше единицы).

Антагонисты - ЛС, соединяющиеся с теми же рецепторами, что и эндогенные медиаторы; не оказывают никакого действия (в таком случае говорят о «нулевом эффекте»).

Частичные агонисты или агонисты-антагонисты - ЛС, связывающиеся с тем же рецепторами, что и эндогенные медиаторы. Эффект, регистрируемый при взаимодействии частичного агониста с рецептором, всегда больше нуля, но меньше единицы.

Все естественные медиаторы - агонисты своих рецепторов.

Нередко отмечают опосредованное действие, заключающееся в изменении активности молекул-мишеней под влиянием ЛС (воздействует таким образом на различные метаболические процессы).

Молекулы-мишени ЛС

ЛС, связываясь с молекулой-мишенью, принадлежащей клетке (или расположенной внеклеточно), модифицирует её функциональный статус, приводя к усилению, ослаблению или стабилизации филогенетически детерминированных реакций организма.

Рецепторы.

- Мембранные (рецепторы I, II и III типов).

- Внутриклеточные (рецепторы IV типа).

Нерецепторные молекулы-мишени цитоплазматической мембраны.

- Цитоплазматические ионные каналы.

- Неспецифические белки и липиды цитоплазматической мембраны.

Иммуноглобулиновые молекулы-мишени.

Ферменты.

Неорганические соединения (например, соляная кислота и металлы).

Молекулы-мишени обладают комплементарностью к эндогенным медиаторам и соответствующим ЛС, заключающейся в определён- ном пространственном расположении ионных, гидрофобных, нуклеофильных или электрофильных функциональных групп. Многие ЛС (антигистаминные препараты I поколения, трициклические антидепрессанты и некоторые другие) могут связываться с морфологически близкими, но функционально отличающимися молекуламимишенями.

Виды связей лекарственных средств с молекулами-мишенями

Самые слабые связи между ЛС и молекулой-мишенью - ван-дерваальсовые связи, обусловленные дипольными взаимодействиями; наиболее часто определяют специфичность взаимодействия препарата и молекулы-мишени. Гидрофобные связи, характерные для ЛС стероидной структуры, более сильные. Гидрофобные свойства глюкокортикостероидных гормонов и липидного бислоя плазматической мембраны позволяют таким ЛС легко проникать через цитоплазматическую и внутриклеточную мембраны внутрь клетки и ядра к своим рецепторам. Ещё более сильные водородные связи образуются между атомами водорода и кислорода соседних молекул. Водородные и вандер-ваальсовые связи возникают при наличии комплементарности ЛС и молекул-мишеней (например, между агонистом или антагонистом и рецептором). Их сила достаточна для образования комплекса ЛС-ре- цептор.

Наиболее сильные связи - ионные и ковалентные. Ионные связи формируются, как правило, между ионами металлов и остатками сильных кислот (антациды) при поляризации. При соединении ЛС и рецептора возникают необратимые ковалентные связи. Антагонис-

ты необратимого действия связываются с рецепторами ковалентно. Большое значение имеет образование координационных ковалентных связей. Стабильные хелатные комплексы (например, соединение ЛС и его антидота - унитиола* с дигоксином) - простая модель координационной ковалентной связи. При формировании ковалентной связи обычно происходит «выключение» молекулы-мишени. Этим объясняют формирование стойкого фармакологического эффекта (антиагрегантный эффект ацетилсалициловой кислоты - результат её необратимого взаимодействия с циклооксигеназой тромбоцитов), а также развитие некоторых побочных эффектов (ульцерогенное влияние ацетилсалициловой кислоты - следствие образования неразрывной связи между данным лекарственным веществом и циклооксигеназой клеток слизистой оболочки желудка).

Нерецепторные молекулы-мишени плазматической мембраны

Препараты, используемые для ингаляционного наркоза - пример ЛС, связывающихся с нерецепторными молекулами-мишенями плазматической мембраны. Средства для ингаляционного наркоза (галотан, энфлуран*) неспецифически соединяются с белками (ионными каналами) и липидами плазматической мембраны центральных нейронов. Существует мнение, что в результате такого связывания препараты нарушают проводимость ионных каналов (в том числе натриевых), приводя к увеличению порога потенциала действия и уменьшению частоты его возникновения. Средства для ингаляционного наркоза, соединяясь с элементами мембран центральных нейронов, вызывают обратимое изменение их упорядоченной структуры. Данный факт под- тверждён экспериментальными исследованиями: анестезированные животные быстро выходят из состояния общего наркоза при помещении их в гипербарическую камеру, где происходит восстановление мембранных нарушений.

Нерецепторные плазматические структуры (потенциал-зависимые натриевые каналы) также выполняют функции молекул-мишеней местных анестетиков. ЛС, связываясь с потенциал-зависимыми натриевыми каналами аксонов и центральных нейронов, блокируют каналы, и, таким образом, нарушают их проводимость для ионов натрия. В результате происходит нарушение деполяризации клетки. Терапевтические дозы местных анестетиков блокируют проводимость периферических нервов, а токсические их количества угнетают и центральные нейроны.

У некоторых ЛС отсутствуют свои молекулы-мишени. Однако такие препараты выполняют функцию субстратов для многих метаболических реакций. Существует понятие «субстратного действия» ЛС:

их применяют для восполнения недостатка различных необходимых организму субстратов (например, аминокислоты, витамины, витаминно-минеральные комплексы и глюкоза).

Рецепторы

Рецепторы - белковые макромолекулы или полипептиды, нередко соединённые с полисахаридными ветвями и остатками жирных кислот (гликопротеины, липопротеины). Каждое ЛС можно сравнить с ключом, подходящим к своему замку - специфическому рецептору данного вещества. Однако только часть молекулы рецептора, называемая сайтом связывания, представляет «замочную скважину». ЛС, соединяясь с рецептором, потенцирует формирование в нём конформационных изменений, приводящих к функциональным изменениям других частей рецепторной молекулы.

Типичная схема работы рецепторов включает четыре этапа.

Связывание ЛС с рецептором, расположенным на клеточной поверхности (или внутриклеточно).

Образование комплекса ЛС-рецептор и, следовательно, изменение конформации рецептора.

Передача сигнала от комплекса ЛС-рецептор к клетке через различные эффекторные системы, многократно усиливающие и интерпретирующие этот сигнал.

Клеточный ответ (быстрый и отсроченный).

Выделяют четыре фармакологически значимых типа рецепторов

Рецепторы - ионные каналы.

Рецепторы, сопряжённые с G-белками.

Рецепторы, обладающие тирозинкиназной активностью.

Внутриклеточные рецепторы. Мембранные рецепторы

Рецепторы I, II и III типов встроены в плазматическую мембрану - трансмембранные белки по отношению к клеточной мембране. Рецепторы IV типа расположены внутриклеточно - в ядре и других субклеточных структурах. Кроме того, выделяют иммуноглобулиновые рецепторы, представляющие гликопротеиновые макромолекулы.

Рецепторы I типа имеют вид и строение ионных каналов, обладают сайтами связывания со специфическим ЛС или медиатором, индуцирующим открытие ионного канала, образованного рецептором. Один из представителей I типа рецепторов - N-холинорецептор - гликопротеин, состоящий из пяти трансмембранных полипептидных субъединиц. Выделяют четыре вида субъединиц - α, β, γ и δ тип. В состав гликопротеина входят по одной субъединице β, γ и δ типа и

две α субъединицы. Трансмембранные полипептидные субъединицы имеют вид цилиндров, пронизывающих мембрану и окружающих узкий канал. Каждый тип субъединиц кодирует собственный ген (однако гены обладают значительной гомологией). Участки связывания ацетилхолина локализуются на «внеклеточных концах» α-субъединиц. При связывании ЛС с этими участками наблюдают конформационные изменения, приводящие к расширению канала и облегчению проводимости ионов натрия, а следовательно, к деполяризации клетки.

К I типу рецепторов, кроме N-холинорецептора, относят также ГАМК А -рецептор, глициновые и глутаматные рецепторы.

Рецепторы, сопряжённые с G-белками (II тип) - самая многочисленная группа рецепторов, обнаруженных в организме человека; выполняют важные функции. С рецепторами II типа связываются большинство нейромедиаторов, гормонов и ЛС. К наиболее распро- странённым клеточным рецепторам этого типа относят вазопрессиновые и ангиотензиновые, α-адренорецепторы, β-адренорецепторы и м-холинорецепторы, опиатные и дофаминовые, аденозиновые, гистаминовые и многие другие рецепторы. Все вышеперечисленные рецепторы - мишени ЛС, составляющих обширные фармакологические группы.

Каждый рецептор второго типа представляет полипептидную цепь с N-концом (расположен во внеклеточной среде) и С-концом (локализован в цитоплазме). При этом полипептидная цепь рецептора семь раз пронизывает плазматическую мембрану клетки (имеет семь трансмембранных сегментов). Таким образом, структуру рецептора II типа можно сравнить с нитью, поочерёдно прошивающей ткань с обеих сторон семь раз. Специфичность различных рецепторов второго типа зависит не только от аминокислотной последовательности, но и от длины и соотношения «петель», выпячивающихся наружу и внутрь клетки.

Рецепторы второго типа образуют комплексы с мембранными G-белками. G-белки состоят из трёх субъединиц: α, β и γ. После связывания рецептора с ЛС образуется комплекс ЛС-рецептор. Затем в рецепторе происходят конформационные изменения. G-белок, связываясь одной или двумя субъединицами со своими «мишенями», активирует или ингибирует их. Аденилатциклаза, фосфолипаза С, ионные каналы, циклический гуанозинмонофосфат (цГМФ)-фосфодиэстераза - мишени G-белка. Как правило, активированные ферменты передают и усиливают «сигнал» через системы вторичных посредников.

Рецепторы с тирозинкиназной активностью

Рецепторы с тирозинкиназной активностью (III тип) - рецепторы пептидных гормонов, регулирующих рост, дифференцировку и

развитие. К пептидным гормонам относят, например, инсулин, эпидермальный фактор роста, фактор роста тромбоцитов. Как правило, связывание рецептора с гормоном активирует тирозиновую протеинкиназу, представляющую цитоплазматическую часть (домен) рецептора. Мишень протеинкиназы - рецептор, обладающий способностью к аутофосфорилированию. Каждый полипептидный рецептор имеет один трансмембранный сегмент (домен).

Однако, как показали исследования, не тирозиновая протеинкиназа, а гуанилатциклаза, катализирующая образование вторичного посредника цГМФ, выполняет функции цитоплазматического домена рецептора предсердного натрийуретического пептида.

Внутриклеточные рецепторы

К внутриклеточным рецепторам (IV тип) относят рецепторы глюкокортикостероидных и тиреоидных гормонов, а также рецепторы ретиноидов и витамина D. В состав группы внутриклеточных рецепторов входят рецепторы, не связанные с плазматической мембраной, локализованные внутри ядра клетки (это главное отличие).

Внутриклеточные рецепторы представляют растворимые ДНК-связывающие белки, регулирующие транскрипцию определённых генов. Каждый рецептор IV типа состоит из трёх доменов - гормон-связывающего, центрального и N-терминального (домен N-конца молекулы рецептора). Эти рецепторы качественно и количественно регулируют уровень транскрипции определённого «набора» генов, специфичного для каждого рецептора, а также вызывают модификацию биохимического и функционального статуса клетки и её метаболических процессов.

Эффекторные системы рецепторов

Существуют различные способы передачи сигналов, формирующихся в процессе функционирования рецепторов, клетке. Путь передачи сигнала зависит от типа рецептора (табл. 2-1).

Главные вторичные посредники - циклический аденозинмонофосфат (цАМФ), ионы кальция, инозитолтрифосфат и диацилглицерол.

Иммуноглобулины (иммуноглобулиновые рецепторы)

С помощью иммуноглобулиновых рецепторов клетки имеют возможность «узнавать» друг друга или антигены. В результате взаимодействия рецепторов происходит адгезия клетки с клеткой или клетки с антигеном. К рецепторам этого типа относят и антитела, свободно циркулирующие во внеклеточных жидкостях и не связанные с клеточными структурами. Антитела, «маркируя» антигены для последующего фагоцитоза, отвечают за развитие гуморального иммунитета.

Таблица 2-1. Эффекторные системы рецепторов

Тип рецептора Пример рецептора Способы передачи сигналов

К типу иммуноглобулинов принадлежат рецепторы, выполняющие функцию «сигнализации» при формировании различных видов и фаз иммунного ответа и иммунной памяти.

Основные представители рецепторов иммуноглобулинового типа (суперсемейства).

Антитела - иммуноглобулины (Ig).

Т-клеточные рецепторы.

Гликопротеины МНС I и МНС II (Major Histocompatibility Complex - главный комплекс гистосовместимости).

Гликопротеины клеточной адгезии (например, CD2, CD4 и CD8).

Некоторые полипептидные цепи комплекса CD3, ассоциированного с Т-клеточными рецепторами.

Fc-рецепторы, расположенные на различных типах лейкоцитов (лимфоциты, макрофаги, нейтрофилы).

Функциональная и морфологическая обособленность иммуноглобулиновых рецепторов позволяет выделить их в отдельный тип.

Ферменты

Многие ЛС, связываясь с ферментами, обратимо или необратимо ингибируют или активируют их. Так, антихолинэстеразные средства усиливают действие ацетилхолина, блокируя расщепляющий его фермент - ацетилхолинэстеразу. Ингибиторы карбоангидразы - группа диуретиков, опосредованно (под влиянием карбоангидразы) уменьшающих реабсорбцию ионов натрия в проксимальных канальцах. НПВС - ингибиторы циклооксигеназы. Однако ацетилсалициловая кислота, в отличие от других НПВС, необратимо блокирует циклооксигеназу, ацетилируя остатки серина (аминокислота) в молекуле фермента. Существует два поколения ингибиторов моноаминоксидазы (МАО). Ингибиторы МАО - ЛС, относящиеся к группе антидепрессантов. Ингибиторы МАО первого поколения (например, фенелзин и изокарбоксазид) необратимо блокируют фермент, окисляющий такие моноамины, как, норадреналин* и серотонин (их недостаток обнаруживают при депрессии). Новое поколение ингибиторов МАО (например, моклобемид) обратимо ингибирует фермент; при этом отмечают меньшую выраженность побочных эффектов (в частности, «тираминового» синдрома).

Неорганические соединения

Существуют ЛС, направленно нейтрализующие или связывающие активные формы различных неорганических соединений. Так, антациды нейтрализуют избыток соляной кислоты желудочного сока, умень-

шая её повреждающее действие на слизистую оболочку желудка и двенадцатиперстной кишки.

Хелатообразующие вещества (комплексоны), соединяясь с опре- делёнными металлами, образуют химически инертные комплексные соединения. Этот эффект используют при лечении отравлений, вызванных приёмом внутрь (или ингаляционно) веществ, содержащих различные металлы (мышьяк, свинец, железо, медь).

Молекулы-мишени, расположенные на чужеродных организмах

Механизмы действия антибактериальных, антипротозойных, антигельминтозных, противогрибковых и противовирусных ЛС очень разнообразны. Приём антибактериальных препаратов, как правило, приводит к нарушению различных этапов синтеза клеточной стенки бактерий (например, к синтезу дефектных белков или РНК в бактериальной клетке) или изменению других механизмов поддержания жизнедеятельности микроорганизма. Подавление или эрадикация возбудителя инфекции - главная цель лечения.

Механизм бактерицидного действия β-лактамных антибиотиков, гликопептидов и изониазида - блокада различных этапов синтеза клеточной стенки микроорганизмов. Все β-лактамные антибиотики (пенициллины, цефалоспорины, карбапенемы и монобактамы) обладают сходным принципом действия. Пенициллины производят бактерицидный эффект, связываясь с пенициллинсвязывающими белками бактерий (выполняют функции ферментов на завершающем этапе синтеза основного компонента клеточной стенки бактерий - пептидогликана). Общность механизма действия β-лактамных антибиотиков заключается в создании препятствий для образования связей между полимерными цепями пептидогликанов с помощью пентаглициновых мостиков (часть структуры антибактериальных препаратов напоминает D-аланил-D-аланин-пептидную цепь клеточной стенки бактерий). Гликопептиды (ванкомицин и тейкопланин*) нарушают синтез клеточной стенки другим способом. Так, ванкомицин оказывает бактерицидное действие, соединяясь со свободной карбоксильной группой пентапептида; таким образом, возникает пространственное препятст-

вие элонгации (удлинения) пептидогликанового хвоста. Изониазид (противотуберкулёзное ЛС) ингибирует синтез миколевых кислот - структурного компонента микобактериальной клеточной стенки.

Механизм бактерицидного действия полимиксинов состоит в нарушении целостности цитоплазматической мембраны бактерий.

Аминогликозиды, тетрациклины, макролиды и левомицетин* угнетают синтез белка бактериальных клеток. Рибосомы бактерий (50S- субъединицы и 30S-субъединицы) и рибосомы человека (6OS-субъеди- ницы и 40S-субъединицы) имеют различную структуру. Этим объясняют избирательное влияние названных групп лекарственных веществ на микроорганизмы. Аминогликозиды и тетрациклины соединяются с 30S-субъединицей рибосомы и ингибируют связывание аминоацилтРНК с А-участком этой тРНК. Кроме того, аминогликозиды нарушают процессы считывания мРНК, блокируя синтез белка. Левомицетин * изменяет процесс транспептидации (перенос растущей аминокислотной цепи на рибосоме с Р-участка на А-участок к вновь приносимым тРНК аминокислотам). Макролиды связываются с 50S-субъединицей рибосомы и ингибируют процесс транслокации (перенос аминокислотной цепи с А-участка на Р-участок).

Хинолоны и фторхинолоны угнетают ДНК-гиразы (топоизомеразу II и топоизомеразу IV) - ферменты, способствующие скручиванию бактериальной ДНК в спираль, необходимую для нормального её функционирования.

Сульфаниламиды ингибируют дигидроптероатсинтетазу, тем самым блокируя синтез предшественников пуринов и пиримидинов (дигидроптеровой и дигидрофолиевой кислот), необходимых для построения ДНК и РНК. Триметоприм угнетает дигидрофолатредуктазу (сродство к бактериальному ферменту очень высоко), нарушая образование тетрагидрофолиевой кислоты (предшественника пуринов и пиримидинов) из дигидрофолиевой. Итак, сульфаниламиды и триметоприм действуют в синергизме, блокируя разные стадии одного процесса - синтеза пуринов и пиримидинов.

5-Нитроимидазолы (метронидазол, тинидазол) оказывают избирательное бактерицидное действие в отношении бактерий, ферментные системы которых способны восстанавливать нитрогруппу. Активные восстановленные формы этих ЛС, нарушая репликацию ДНК и синтез белка, ингибируют тканевое дыхание.

Рифампицин (противотуберкулёзный препарат) специфически угнетает синтез РНК.

Противогрибковые и противовирусные средства обладают некоторым сходством механизмов действия. Производные имидазола и триазола ингибируют синтез эргостерола - главного структурного компо-

нента грибковой клеточной стенки, а полиеновые антибактериальные препараты (амфотерицин, нистатин) связываются с ним. Флуцитозин (противогрибковое ЛС) блокирует синтез грибковой ДНК. Многие противовирусные ЛС (например, ацикловир, идоксуридин, зидовудин - аналоги нуклеозидов) также угнетают синтез вирусных ДНК и

N-холинорецепторы нервно-мышечных синапсов гельминтов - молекулы-мишени таких противогельминтных ЛС, как, пирантел и левамизол. Стимуляция данных рецепторов вызывает тотальный спастический паралич.

Характер, сила и длительность действия ЛС

Длительность, силу и способ взаимодействия ЛС и молекулы-мишени характеризует фармакологический ответ (как правило, обусловлен прямым действием препарата, реже - изменением сопряжённой системы, и только в единичных случаях регистрируют рефлекторный фармакологический ответ).

Основным действием ЛС считают эффект вещества, используемый при лечении данного больного. Другие фармакологические эффекты рассматриваемого ЛС называют второстепенными (или неосновными). Функциональные нарушения, вызванные приёмом препарата, рассматривают как нежелательные реакции (см. главу 4 «Побочные эффекты лекарственных средств»). Один и тот же эффект в одном случае может быть основным, а в другом - второстепенным.

Выделяют генерализованное или локальное (местное) действия ЛС. Местные эффекты наблюдают при использовании мазей, присыпок или ЛС, принимаемых внутрь, не всасывающихся в ЖКТ, либо, наоборот, хорошо всасывающихся, но концентрирующихся в одном органе. В большинстве случаев при проникновении ЛС в биологические жидкости организма его фармакологический эффект может сформироваться в любой точке организма.

Способность многих ЛС воздействовать при монотерапии на различные уровни регуляции и процессы клеточного метаболизма одновременно в нескольких функциональных системах или органах доказывает полиморфизм их фармакологического эффекта. С другой стороны, столь большое многообразие мишеней на всех уровнях регуляции объясняет одинаковый фармакологический эффект ЛС, имеющих различную химическую структуру.

Хаотическое движение молекул позволяет ЛС оказаться вблизи оп- ределённого участка (при высоком аффинитете к рецепторам); при этом необходимого эффекта достигают даже при назначении низких концентраций ЛС. При увеличении концентрации молекул ЛС,

они вступают в реакцию с активными центрами других рецепторов (к которым у них меньший аффинитет); в результате возрастает число фармакологических эффектов, а также исчезает их селективность. Например, β 1 -адреноблокаторы в небольших дозах ингибируют только β 1 -адренорецепторы. Однако при увеличении дозы β 1 -адреноблокаторов, их селективность исчезает, при этом отмечают блокаду всех β-адренорецепторов. Подобную картину наблюдают и при назначении β-адреномиметиков. Таким образом, при увеличении дозы ЛС наряду с некоторым усилением клинического эффекта всегда регистрируют, и значительно, увеличение количества побочных эффектов.

Состояние молекулы-мишени (как в основной, так и в сопряжён- ной системе) необходимо учитывать при прогнозировании и оценке эффективности действия ЛС. Нередко преобладание побочных эффектов над основным действием обусловлено нарушением физиологического баланса вследствие характера заболевания или индивидуальных особенностей пациента.

Более того, сами ЛС могут изменять чувствительность молекул-мишеней, варьируя скорости их синтеза или деградации или индуцируя формирование различных модификаций мишеней под действием внутриклеточных факторов, - всё это приводит к изменению фармакологического ответа.

По фармакологическим эффектам ЛС можно разделить на две группы - вещества, обладающие специфическим и неспецифическим действием. К ЛС неспецифического действия относят препараты, вызывающие развитие широкого спектра фармакологических эффектов путём влияния на различные системы биологического обеспечения. В эту группу ЛС входят, в первую очередь, субстратные вещества: витаминные комплексы, глюкоза и аминокислоты, макроэлементы и микроэлементы, а также растительные адаптогены (например, женьшень и элеутерококк). В связи с отсутствием чётких границ, определяющих основной фармакологический эффект данных ЛС, их назначают большому количеству пациентов при разных заболеваниях.

Если ЛС действует (как агонист или антагонист) на рецепторный аппарат определённых систем, его влияние рассматривают как специфическое. К этой группе ЛС относят антагонисты и агонисты различных подтипов адренорецепторов, холинорецепторов и т.д. Органное расположение рецепторов не влияет на эффект, производимый препаратами специфического действия. Поэтому, несмотря на специфичность действия данных ЛС, регистрируют различные фармакологические ответы. Так, ацетилхолин вызывает сокращение гладких мышц бронхов, пищеварительного тракта, увеличивает секрецию слюнных желёз. Атропин производит противоположный эффект. Избиратель-

ность или селективность действия ЛС отмечают только при изменении активности системы только в определённой её части или в одном органе. Например, пропранолол блокирует все β-адренорецепторы симпатоадреналовой системы. Атенолол - селективный β 1 -адреноблокатор - блокирует только β 1 -адренорецепторы сердца и не влияет на β 2 -адренорецепторы бронхов (при использовании небольших доз). Сальбутамол избирательно стимулирует β 2 -адренорецепторы бронхов, оказывая незначительное действие на β 1 -адренорецепторы сердца.

Избирательность (селективность) действия ЛС - способность вещества накапливаться в ткани (зависит от физико-химических свойств ЛС) и производить требуемый эффект. Избирательность обусловлена также сродством к рассматриваемому морфологическому звену (с учё- том строения клеточной мембраны, особенностей клеточного метаболизма и т.д.). Большие дозы селективно действующих ЛС чаще всего оказывают влияние на всю систему, но вызывают фармакологический ответ, соответствующий специфическому действию ЛС.

Если основная масса рецепторов взаимодействует с ЛС, то отмечают быстрое наступление фармакологического эффекта и его большую выраженность. Процесс происходит только при высоком аффинитете ЛС (его молекула может иметь строение, сходное со структурой естественного агониста). Активность ЛС и длительность его действия в большинстве случаев пропорциональны скорости образования и диссоциации комплекса с рецептором. При повторном введении ЛС иногда регистрируют снижение эффекта (тахифилаксию), т.к. не все рецепторы освободились от предыдущей дозы препарата. Уменьшение выраженности эффекта происходит и в случае истощения рецепторов.

Реакции, регистрируемые при введении лекарственных средств

Ожидаемый фармакологический ответ.

Гиперреактивность - повышенная чувствительность организма к используемому ЛС. Например, при сенсибилизации организма пенициллинами повторное их введение может привести к возникновению реакции гиперчувствительности немедленного типа или даже к развитию анафилактического шока.

Толерантность - снижение чувствительности к применяемому ЛС. Например, при бесконтрольном и длительном приеме β 2 -адреномиметиков, толерантность к ним возрастает, а фармакологический эффект уменьшается.

Идиосинкразия - индивидуальная чрезмерная чувствительность (непереносимость) к данному препарату. Например, причиной идиосинкразии может быть генетически обусловленное отсутс-

твие ферментов, метаболизирующих данное вещество (см. главу 7 «Клиническая фармакогенетика»).

Тахифилаксия - быстро развивающаяся толерантность. К некоторым ЛС, например к нитратам (при непрерывном и длительном их применении), толерантность развивается особенно быстро; при этом препарат заменяют или увеличивают его дозу.

Оценивая время действия ЛС, необходимо выделять латентный период, максимальное действие, время удержания эффекта и время последействия.

Время латентного периода ЛС, особенно при ургентных ситуациях, определяет их выбор. Так, в одних случаях латентный период составляет секунды (сублингвальная форма нитроглицерина), в других - дни и недели (аминохинолин). Длительность латентного периода может быть обусловлена постоянным накоплением ЛС (аминохинолин) в месте его воздействия. Нередко длительность латентного периода зависит от опосредованного механизма действия (гипотензивный эффект β-адреноблокаторов).

Время удержания эффекта - объективный фактор, определяющий кратность назначения и длительность применения ЛС.

Подразделяя ЛС по фармакологическим эффектам, необходимо учитывать, что в основе одного и того же симптома лежат различные механизмы действия. Примером служит гипотензивное влияние таких ЛС, как диуретики, β-адреноблокаторы, блокаторы медленных кальциевых каналов (различные механизмы действия производят один и тот же клинический эффект). Этот факт учитывают при выборе ЛС или их комбинации при проведении индивидуальной фармакотерапии.

Существуют факторы, влияющие на скорость наступления эффекта, его силу и продолжительность при применении лекарственных веществ.

Скорость, способ введения и доза ЛС, взаимодействующего с рецептором. Например, внутривенное струйное введение 40 мг фуросемида производит более быстрый и выраженный диуретический эффект, чем 20 мг препарата, введённого внутривенно или 40 мг диуретика, принятого внутрь.

Тяжёлое течение заболевания и связанные с ним органические поражения органов и систем. Большое влияние на функциональное состояние основных систем оказывают и возрастные аспекты.

Взаимодействие используемых ЛС (см. главу 5 «Взаимодействие лекарственных средств»).

Важно знать, что применение некоторых ЛС оправдано лишь при условии первоначального патологического изменения системы или акцепторов мишени. Так, жаропонижающие ЛС (антипиретики) снижают температуру только при лихорадке.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Как приготовить пасту «Болоньезе» в домашних условиях Как приготовить пасту «Болоньезе» в домашних условиях Сакэ: знаменитый японский напиток Сакэ: знаменитый японский напиток Что делают в чистый четверг? Что делают в чистый четверг?