Кость как орган (строение кости). Косное вещество Химический состав и физические свойства костей

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

О своем организме человек знает много, например, где расположены органы, какую функцию они выполняют. Почему бы не проникнуть вглубь кости и не узнать ее строение и состав? Это очень занимательно, ведь химический состав костей весьма разнообразен. Он помогает понять, почему каждый костный элемент очень важен и какую функцию он несет.

Основная информация

Живая кость у взрослых людей имеет:

  • 50% - вода;
  • 21, 85% - вещества неорганического типа;
  • 15, 75% - жир;
  • 12,4% - коллагеновые волокна.

Вещества неорганического типа – это разные соли. Большая их часть представлена известковым фосфатом (шестьдесят процентов). В не таком большом количестве присутствует известковый карбонат и магниевый сульфат (5,9 и 1,4% соответственно). Интересно, что в костях представлены все земные элементы. Минеральные соли поддаются растворению. Для этого нужен некрепкий раствор азотной или соляной кислоты. Процесс растворения в этих веществах имеет свое название – декальцинация. После нее остается лишь органической вещество, которое сохраняет костную форму.

Органическое вещество отличается пористостью и эластичностью. Его можно сравнить с губкой. Что происходит, когда удаляется это вещество через сжигание? Кость по форме остается прежней, но теперь она становится хрупкой.

Понятно, что только взаимосвязь неорганических и органических веществ делает костный элемент прочным, упругим. Еще более прочной кость становится благодаря составу губчатого и компактного вещества.

Неорганический состав

Примерно век назад было высказано мнение, что костная ткань человека, точнее, ее кристаллы, по структуре похожи на апатиты. Со временем это было доказано. Костные кристаллы – гидроксилапатиты, а по форме похожи на палочки и пластины. Но кристаллы – это лишь доля минеральной фазы ткани, другая доля – это аморфный фосфат кальция. Его содержание зависит от возраста человека. У молодых людей, подростков и детей его много, больше, чем кристаллов. Впоследствии соотношение меняется, поэтому в более старшем возрасте больше уже кристаллов.

Каждый день кости человеческого скелета теряют и опять приобретают около восьмисот миллиграмм кальция

Организм взрослого человека имеет более одного килограмма кальция. Он содержится в основном в зубных и костных элементах. В сочетании с фосфатом образуется гидроксилапатит, который не растворяется. Особенность в том, что в костях основная часть кальция регулярно обновляется. Каждый день кости человеческого скелета теряют и опять приобретают около восьмисот миллиграмм кальция.

Минеральная доля имеет много ионов, но чистый гидроксилапатит их не содержит. Есть ионы хлора, магния и других элементов.

Органический состав

95% матрикса органического типа – это коллаген. Если говорить о его значимости, то вместе с минеральными элементами он является основным фактором, от которого зависят механические костные свойства. Коллаген ткани кости имеет особенности:

  • в нем больше оксипролина по сравнению с кожным коллагеном;
  • в нем много свободных ε-амино групп оксилизиновых и лизиновых остатков;
  • в нем больше фосфата, основная часть которого связана с сериновыми остатками.

Сухой деминерализованный костный матрикс содержит почти двадцать процентов белков неколлагеновых. Среди них есть части протеогликанов, но их немного. Органический матрикс содержит глюкозаминогликаны. Считается, что они напрямую связаны с оссификацией. Кроме того, если они изменяются, происходит окостенение. В костном матриксе есть липиды – прямой компонент ткани кости. Они участвуют в минерализации. Костный матрикс имеет еще одну особенность – в нем очень много цитрата. Почти девяносто его процентов – доля костной ткани. Считается, что цитрат важен для процесса минерализации.

Вещества кости

Большая часть костей взрослого человека имеет в составе пластинчатую костную ткань, из которой образуется два вида вещества: губчатой и компактное. Их распределение зависит от функциональных нагрузок, осуществляемых на кость.

Если рассматривать строение костей, то в образовании диафизов трубчатых костных элементов играет важную роль компактное вещество. Оно как тонкая пластина покрывает снаружи их эпифизы, плоские, губчатые кости, которые построены из губчатого вещества. В компактном веществе очень много тоненьких канальцев, которые состоят из кровеносных сосудов и волокон нервов. Некоторые каналы находятся в основном параллельно костной поверхности.

Стенки каналов, расположенных в центре, сформированы пластинками, толщина которых от четырех до пятнадцати мкм. Они как будто вставлены друг в друга. Один канал возле себя может иметь двадцать подобных пластинок. Состав кости включает в себя остеон, то есть объединение канала, расположенного в центре, с пластинками возле него. Между остеонами есть пространства, которые наполнены вставочными пластинками.

В строении кости не менее важное значение имеет губчатое вещество. Его название дает основание предположить, что оно похоже на губку. Так оно и есть. Она выстроена с балок, между которыми присутствуют ячейки. Кость человека постоянно испытывает нагрузки в виде сжатия и растяжения. Именно они определяют размеры балок, их расположение.

Костное строение включает надкостницу, то есть соединительнотканную оболочку. Она прочно соединена с костным элементом с помощью волокон, которые проходят в его глубину. Накостница имеет два слоя:

  1. Наружный, фиброзный. Он формируется волокнами коллагена, благодаря которым оболочка отличается прочностью. Этот слой имеет в строении нервы и сосуды.
  2. Внутренний, ростковый. В его строении есть остеогенные клетки, благодаря которым кость расширяется и восстанавливается после травм.

Получается, что надкостница выполняет три основные функции: трофическую, защитную, костеобразующую. Говоря о строении кости также следует упомянуть об эндосте. Им кость покрыта изнутри. Он похож на тонкую пластинку и несет в себе остеогенную функцию.

Еще немного о костях

Благодаря удивительному строению и составу кости обладают уникальными характеристиками. Они очень пластичны. Когда человек выполняет физические нагрузки, тренируется, кости проявляют гибкость и подстраиваются под изменяющиеся обстоятельства. То есть в зависимости от нагрузок увеличивается или уменьшается количество остеонов, меняется толщина пластинок веществ.

Каждый человек может посодействовать оптимальному костному развитию. Для этого необходимо регулярно и умеренно заниматься физическими упражнениями. Если в жизни преобладает сидячий образ действий, кости начнут ослабляться и станут более тонкими. Есть заболевания костей, которые ослабляют их, например, остеопороз, остеомиелит. На строение кости может оказать влияние профессия. Конечно, не последнюю роль играет наследственность.

Итак, на некоторые особенности костного строения человек не способен повлиять. Все же некоторые факторы зависят от него. Если с детства родители будут следить за тем, чтобы ребенок правильно питался и занимался умеренной физической нагрузкой, его кости будут в прекрасном состоянии. Это значительно повлияет на его будущее, ведь ребенок вырастет крепким, здоровым, то есть успешным человеком.

text_fields

text_fields

arrow_upward

Костное вещество состоит из

Органических (оссеин ) веществ – 1/3 и
неорганических (2/3) (главным образом, солей кальция, 95%) веществ.

Если кость подвергнуть действию раствора соляной кислоты, соли кальция растворятся, а органическое вещество останется, сохраняя форму кости. Такая декальцинированная кость приобретает исключительную эластичность и легко деформируется. Если же кость подвергнуть обжиганию, то органическое вещество сгорает, а неорганическое остается. Такая кость сохраняет прежнюю форму, но приобретает исключительную хрупкость. Она может расколоться при малейшем прикосновении. С возрастом количественное соотношение оссеина и минеральных солей изменяется. Кости детей содержат больше оссеина и поэтому они более эластичны. В старости в костях становится больше минеральных солей, их содержание может доходить до 80%. Поэтому кости стариков более хрупкие, а при падении у них часто случаются переломы.

Лежащие в земле кости теряют органическое вещество под воздействием бактерий и становятся хрупкими. В сухом грунте кости сохраняются лучше, так как для размножения бактерий необходима влага. Такие кости постепенно мумифицируются. В известковой почве кости пропитываются кальцием – «окаменевают».

Строение костей

text_fields

text_fields

arrow_upward

Рис. 1.1.

Самая прочная кость нашего скелета – большая берцовая , на нее ложится наибольшая тяжесть при поддержании тела в вертикальном положении.

Эта кость способна выдержать нагрузку до 1650 кг, т.е. примерно в 25 раз больше ее обычной нагрузки. Таков запас технической прочности природной конструкции.

Кость уникальна не только по сочетанию твердости и упругости, обусловленному ее химическим составом. Она отличается также исключительной легкостью. Это связано с особенностями ее микроскопического строения.

Поверхность кости покрыта надкостницей (Рис. 1.1 Большеберцовая кость (часть надкостницы разрезана и откинута)) .

Она состоит из двух слоев – наружного (соединительнотканного) и внутреннего – остеогенного, содержащего стволовые костные клетки и остеобласты.

При переломах костей остеобласты «зарубцовывают» щель грубоволокнистой костной тканью, образуя «костную мозоль».

Надкостница богата нервами и сосудами, через нее осуществляется питание и иннервация кости.

На распиле через кость обнаруживается неоднородность ее строения. На поверхности расположено так называемое плотное, или компактное, вещество (substantia compacta), а в глубине – губчатое (substantia spongiosa) (рис. 1.2).

Толщина слоя компактного вещества изменяется в зависимости от нагрузки, испытываемой костью, и наиболее значительна в области диафизов.

Рис. 1.2. Проксимальный конец бедренной кости

Губчатое вещество образовано очень тонкими костными перекладинами, которые располагаются не беспорядочно, а в соответствии с распределением функциональных нагрузок на всю кость или ее части.

Преимущественно из губчатого вещества состоят эпифизы длинных костей, все короткие кости, часть смешанных и плоских костей, т.е. легкие и прочные части скелета, испытывающие напряжение в различных направлениях.

Диафизы и некоторые тонкие плоские кости почти полностью лишены губчатого вещества. Они выполняют функции опоры и движения.

Рис. 1.2. Проксимальный конец бедренной кости:
А – фронтальный распил:
1 – костномозговая полость;
2 – губчатое вещество;
3 – компактное вещество;

Б – схема расположения перекладин в губчатом веществе.

Структурная единица костной ткани

text_fields

text_fields

arrow_upward

Структурной единицей костной ткани являются остеон или гаверсова система (рис. 1.3).

Рис. 1.3. Схема строения трубчатой кости:

А – надкостница;
Б – компактное вещество кости;
В – эндост;
Г – костно-мозговая полость.
1 – вставочные пластинки;
2 – слой наружных общих пластинок;
3 – кровеносные сосуды;
4 – остеоциты;
5 – канал остеона;
6 – прободающий канал;
7 – волокнистый слой надкостницы;
8 – костная трабекула губчатой ткани;
9 – слой внутренних общих пластинок;
10 – остеон

Остеон представляет собой систему костных пластинок в виде вставленных друг в друга цилиндров, между которыми лежат костные клетки – остеоциты. Расположенный в центре остеона гаверсов канал, содержит кровеносные сосуды, обеспечивающие обмен веществ клеток кости. Между остеонами находятся вставочные пластинки. Из остеонов состоит компактное вещество и перекладины губчатого вещества. Распределение компактного и губчатого вещества зависит от функциональных условий кости.

Костные ячейки губчатого вещества заполнены красным костным мозгом. Желтый костный мозг находится в центральном канале трубчатых костей – костно-мозговой полости.

У взрослых вся полость заполнена желтым костным мозгом, но в период роста и развития ребенка, когда требуется интенсивная кроветворная функция, преобладает красный костный мозг. С возрастом он постепенно замещается желтым.

Кость, os, ossis, как орган живого организма состоит из нескольких тканей, главнейшей из которых является костная.

Химический состав кости и ее физические свойства.

Костное вещество состоит из двоякого рода химических веществ: органических (1/3), главным образом оссеина, и неорганических (2/3), главным образом солей кальция, особенно фосфорнокислой извести (более половины - 51,04 %). Если кость подвергнуть действию раствора кислот (соляной, азотной и др.), то соли извести растворяются (decalcinatio), а органическое вещество остается и сохраняет форму кости, будучи, однако, мягким и эластичным. Если же кость подвергнуть обжиганию, то органическое вещество сгорает, а неорганическое остается, также сохраняя форму кости и ее твердость, но будучи при этом весьма хрупким. Следовательно, эластичность кости зависит от оссеина, а твердость ее - от минеральных солей. Сочетание неорганических и органических веществ в живой кости и придает ей необычайные крепость и упругость. В этом убеждают и возрастные изменения кости. У маленьких детей, у которых оссеина сравнительно больше, кости отличаются большой гибкостью и потому редко ломаются. Наоборот, в старости, когда соотношение органических и неорганических веществ изменяется в пользу последних, кости становятся менее эластичными и более хрупкими, вследствие чего переломы костей чаще всего наблюдаются у стариков.

Строение кости

Структурной единицей кости, видимой в лупу или при малом увеличении микроскопа, является остеон, т. е. система костных пластинок, концентрически расположенных вокруг центрального канала, содержащего сосуды и нервы.

Остеоны не прилегают друг к другу вплотную, а промежутки между ними заполнены интерстициальными костными пластинками. Остеоны располагаются не беспорядочно, а соответственно функциональной нагрузке на кость: в трубчатых костях параллельно длиннику кости, в губчатых - перпендикулярно вертикальной оси, в плоских костях черепа - параллельно поверхности кости и радиально.

Вместе с интерстициальными пластинками остеоны образуют основной средний слой костного вещества, покрытый изнутри (со стороны эндоста) внутренним слоем костных пластинок, а снаружи (со стороны периоста) - наружным слоем окружающих пластинок. Последний пронизан кровеносными сосудами, идущими из надкостницы в костное вещество в особых прободающих каналах. Начало этих каналов видно на мацерирован-ной кости в виде многочисленных питательных отверстий (foramina nutricia). Проходящие в каналах кровеносные сосуды обеспечивают обмен веществ в кости. Из остеонов состоят более крупные элементы кости, видимые уже невооруженным глазом на распиле или на рентгенограмме, - перекладины костного вещества, или трабекулы. Из этих трабекул складывается двоякого рода костное вещество: если трабекулы лежат плотно, то получается плотное компактное вещество, substantia compacta. Если трабекулы лежат рыхло, образуя между собою костные ячейки наподобие губки, то получается губчатое, трабекулярное вещество, substantia spongiosa, trabecularis (spongia, греч. - губка).

Распределение компактного и губчатого вещества зависит от функциональных условий кости. Компактное вещество находится в тех костях и в тех частях их, которые выполняют преимущественно функцию опоры (стойки) и движения (рычаги), например в диафизах трубчатых костей.

В местах, где при большом объеме требуется сохранить легкость и вместе с тем прочность, образуется губчатое вещество, например в эпифизах трубчатых костей.

Перекладины губчатого вещества располагаются не беспорядочно, а закономерно, также соответственно функциональным условиям, в которых находится данная кость или ее часть. Поскольку кости испытывают двойное действие - давление и тягу мышц, постольку костные перекладины располагаются по линиям сил сжатия и растяжения. Соответственно разному направлению этих сил различные кости или даже части их имеют разное строение. В покровных костях свода черепа, выполняющих преимущественно функцию защиты, губчатое вещество имеет особый характер, отличающий его от остальных костей, несущих все 3 функции скелета. Это губчатое вещество называется диплоэ, diploe (двойной), так как оно состоит из неправильной формы костных ячеек, расположенных между двумя костными пластинками - наружной, lamina externa, и внутренней, lamina interna. Последнюю называют также стекловидной, lamina vftrea, так как она ломается при повреждениях черепа легче, чем наружная.

Костные ячейки содержат костный мозг - орган кроветворения и биологической защиты организма. Он участвует также в питании, развитии и росте кости. В трубчатых костях костный мозг находится также в канале этих костей, называемом поэтому костномозговой полостью, cavitas medullaris.

Таким образом, все внутренние пространства кости заполняются костным мозгом, составляющим неотъемлемую часть кости как органа.


Костный мозг бывает двух родов: красный и желтый.

Красный костный мозг, medulla ossium rubra (детали строения см. в курсе гистологии), имеет вид нежной красной массы, состоящей из ретикулярной ткани, в петлях которой находятся клеточные элементы, имеющие непосредственное отношение к кроветворению (стволовые клетки) и костеобразованию (костесозидатели - остеобласты и костеразруши-тели - остеокласты). Он пронизан нервами и кровеносными сосудами, питающими, кроме костного мозга, внутренние слои кости. Кровеносные сосуды и кровяные элементы и придают костному мозгу красный цвет.

Желтый костный мозг, medulla ossium flava, обязан своим цветом жировым клеткам, из которых он главным образом и состоит.

В периоде развития и роста организма, когда требуются большая кроветворная и костеобразующая функции, преобладает красный костный мозг (у плодов и новорожденных имеется только красный мозг). По мере роста ребенка красный мозг постепенно замещается желтым, который у взрослых полностью заполняет костномозговую полость трубчатых костей.

Снаружи кость, за исключением суставных поверхностей, покрыта надкостницей, periosteum (периост).

Надкостница - это тонкая, крепкая соединительнотканная пленка бледно-розового цвета, окружающая кость снаружи и прикрепленная к ней с помощью соединительнотканных пучков - прободающих волокон, проникающих в кость через особые канальцы. Она состоит из двух слоев: наружного волокнистого (фиброзного) и внутреннего костеобразующего (остеогенного, или камбиального). Она богата нервами и сосудами, благодаря чему участвует в питании и росте кости в толщину. Питание осуществляется за счет кровеносных сосудов, проникающих в большом числе из надкостницы в наружное компактное вещество кости через многочисленные питательные отверстия (foramina nutricia), а рост кости осуществляется за счет остеобластов, расположенных во внутреннем, прилегающем к кости слое (камбиальном). Суставные поверхности кости, свободные от надкостницы, покрывает суставной хрящ, cartilage articularis.

Таким образом, в понятие кости как органа входят костная ткань, образующая главную массу кости, а также костный мозг, надкостница, суставной хрящ и многочисленные нервы и сосуды.

Видео урок: Кость как орган. Развитие и рост костей. Классификация костей по М.Г. Привесу

Другие видео уроки по данной теме находятся:

Скелет – это основа опорно-двигательной системы, главное основание организма. Он состоит из костей, которые служат опорой всем мягким тканям. Что же находится в самих костях, ведь невозможно их представить пустыми?

Кость — это орган, и как любой другой, он состоит из нескольких видов ткани. Одна из главных – это компактное костное вещество, без которой формирование кости невозможно в принципе. Она соседствует с немаловажным губчатым веществом. Их противопоставления будут рассмотрены ниже.

Кости бывают нескольких видов и отличаются между собой не только размерами. Каждая из них имеет индивидуальное предназначение. В связи с принимаемой на себя кость занимает наиболее подходящее расположение в скелете. По данному принципу действуют и костные ткани.

Поэтому компактная костная ткань, точнее ее большее количество находится в костях, отвечающих за подвижность скелета, а также тех, которые выполняют функцию опоры.

Не обходятся без компактного вещества следующие кости:

  • Длинные. Отвечают за скелет конечностей. Их трубчатая средняя часть полностью заполнена компактным веществом;
  • Плоские. Их наружная часть покрыта компактным веществом;
  • Короткие. Компактная костная ткань также покрывает их снаружи, тонким слоем.

Строение компактного вещества кости

Для лучшего представления о строении компактной костной ткани сперва следует ознакомиться со структурой кости в целом.

Взяв срез кости и увеличив его с помощью микроскопа, можно увидеть множество костных пластинок, сосредоточенных вокруг специального канала, который содержит в себе нервы и сосуды. Пластинки эти представляют собой систему, под названием Остеон. Это главная структурная единица кости.

Питание при больных суставах: необходимые продукты и рецепты

Упорядочены такие пластинки в соответствии с нагрузкой, которую принимает на себя кость. Далее остеоны организуются в более крупные костные элементы под названием трабекулы. И только затем образуется костное вещество двух типов.

Весь процесс зависит от плотности образования этих костных элементов:

  • В случае, когда трабекулы ложатся рыхлой плоскостью – образовываются специальные ячейки, напоминающие губчатую поверхность. Так формируется губчатая костная ткань;
  • Когда трабекулы ложатся плотным слоем – образуется компактное вещество кости.

Разница двух типов костного вещества в том, что губчатая ткань отвечает за легкость и эластичность, ввиду чего имеет значительно уменьшенную плотность. Компактная костная ткань же формирует весь корковый слой костей. Это обеспечено ее большой плотностью и прочностью строения. Поэтому данное вещество довольно тяжелое и составляет основной вес костей скелета.

Таким образом, компактное вещество кости состоит из первичной структурной единицы остеона, который главным образом и отвечает за ее прочность.

О строении скелета узнайте из предложенного видеоматериала.

Функции компактной костной ткани

В детстве дети часто слышат от родителей призыв к активному занятию спортом или гимнастикой. К сожалению, не все следуют советам старших и только со временем понимают, какое огромное значение имели родительские фразы.

Рассматривая причину вышеупомянутого, нужно обратить внимание на следующее: костное вещество делится на два типа, каждый из которых имеет разный состав. В то время, когда губчатое вещество формируется из органических химических элементов (оссеина), компактное вещество кости состоит из неорганических веществ. Главным образом их составом являются соли кальция фосфорнокислая известь. Они отвечают за твердость ткани.

Маленький организм имеет большое количество оссеина, чем обусловлена гибкость растущих костей. Когда процесс роста костей подходит к фазе завершения, некоторые хрящи заменяются костьми, а сами кости приобретают необходимое количество огрубевших выступов и углублений, на которых крепятся связки и система мышц.

Гиперэкстензия для спины, упражнения для укрепления мышц

Чем больше мышечной массы накапливает организм в период роста, тем большее количество необходимых неровностей успевают создать кости. Затем компактная костная ткань формирует плотный корковый слой, и строение скелета практически не подлежит дальнейшим изменениям.

Как можно видеть, компактное ткань вступает в полное действие во вторую очередь, после губчатого. Этим обусловлена главная защитная функция кости.

Также компактное вещество кости запасает все химические элементы, необходимые костям. Именно оно содержит в своей структуре большое количество питательных отверстий, сквозь которые проникают кровеносные сосуды несущие питание.

Ввиду слаженной работы компактного вещества, нервов и сосудов кости, она имеет возможность расти в толщину, что необходимо.

Компактное вещество кости, составляя большую часть костной структуры, образует ее основную массу. Выполняя главную функцию защиты скелета, а значит, и поддержки всего организма в целом компактное вещество, с возрастом, требует к себе достаточного внимания, в виде дополнительных источников минеральных элементов, а именно – витаминов A, D и конечно, кальция.

Мар 18, 2016 Виолетта Лекарь

Косное вещество - совокупность тех веществ в биосфере, в образовании которых живые организмы не участвуют.[ ...]

Косное вещество - это вещество, которое образуется без участия живого вещества. Примерами косного вещества являются изверженные горные породы.[ ...]

Вещество биосферы резко и глубоко неоднородно (§ 38): живое, косное, биогенное и биокосное, Живое вещество охватывает и перестраивает все химические процессы биосферы, действенная его энергия, по сравнению с энергией косного вещества, уже в историческом времени огромна. Живое вещество есть самая мощная геологическая сила, растущая с ходом времени. Оно живет не случайно и независимо от биосферы, но есть закономерное проявление физико-химической ее организованности. Его образование и существование есть ее главная геологическая функция (ч. II).[ ...]

Косное вещество - неживое, но связанное с жизнью вещество, к которому относятся глубинные породы, выбрасываемые вулканами; при контакте с живым веществом превращается в биокосное.[ ...]

Вещество косное - неживое вещество, в образовании которого не участвовало вещество живое.[ ...]

ЖИВОЕ ВЕЩЕСТВО - согласно В.И. Вернадскому, «совокупность всех живых организмов, в данный момент существующих, численно выраженная в элементарном химическом составе, в весе, энергии» . Ж.в. неотделимо рт биосферы, являясь одной из самых могущественных геохимических сил нашей планеты, и обладает целым рядом уникальных свойств (напр., способно поляризовать свет в отличие от косного вещества - закон Пастера-Кюри). См. Жизнь.[ ...]

Биокосное вещество-это вещество, одновременно создаваемое и живыми организмами и косными процессами. Оно, по определению В. И. Вернадского, является закономерной структурой из живого и косного вещества.[ ...]

Классификация вещества биосферы, предложенная В.И. Вернадским, с логической точки зрения не является безупречной, так как выделенные категории вещества частично перекрывают друг друга. Так, вещество космического происхождения одновременно является и косным. Атомы многих элементов являются и радиоактивными, и рассеянными одновременно. Биокосное вещество», нельзя рассматривать в качестве особого типа вещества, поскольку оно состоит из двух веществ - живого и косного. По своему характеру это не вещество, а динамическая система, что подчеркивает и сам В.И. Вернад-ский.[ ...]

В-третьих, мы имеем вещество, образуемое процессами, в которых живое вещество не участвует: косное вещество, твердое, жидкое и газообразное, из которых только газообразное и жидкое (и дисперсное твердое) являются на поверхности биосферы носителями свободной энергии.[ ...]

Планетная астрономия и живое вещество (§ 167). Создание тропосферы как функция дисперсного живого вещества в геохорах и в гидросфере (§ 168). Разнородный с точки зрения энергетического эффекта химический элементарный состав вещества биосферы: живое, косное и биокосное вещество. Различия внутри живого вещества. Химический элементарный состав живого вещества (§ 171). Различное понимание химического состава живого вещества в физиологии растений и биогеохимии (§ 172).[ ...]

Фундаментальным отличием живого вещества от косного является охваченность его эволюционным процессом, непрерывно создающим новые формы живых существ. Многообразие форм жизни и их многофункциональность создают основу устойчивого круговорота веществ и канализированных потоков энергии. В этом специфика и залог устойчивости биосферы как уникальной оболочки земного шара.[ ...]

Особой категорией является биокосное вещество. В. И. Вернадский (1926) писал, что оно «создается в биосфере одновременно живыми организмами и косными процессами, представляя системы динамического равновесия тех и других». Организмы в биомосном веществе играют ведущую роль. Биокосное вещество планеты, таким образом,- это почва, кора выветривания, все природные воды, свойства которых зависят от деятельности на Земле живого вещества. Следовательно, биосфера - это та область Земли, которая охвачена влиянием живого вещества. Жизнь на Земле-самый выдающийся процесс на ее поверхности, получающий живительную энергию Солнца и вводящий в движение едва ли не все химические элементы таблицы Менделеева.[ ...]

Сравнение химического состава живого и косного вещества Земли - земной коры и вод Мирового океана показывает несоответствие распространенности химических элементов в косных компонентах и живом веществе (рис. 2.1, а-г). Так, в земной коре содержание углерода в 70 раз ниже, чем в живом веществе, а кремния, наоборот, намного больше.[ ...]

ЭКОСИСТЕМА -совокупность биотических и косных составляющих, которая, используя внешний поток энергии, создает более сильные связи (обмен веществом и информацией) внутри себя, чем между рассматриваемой совокупностью и ее окружением, что обеспечивает неопределенно долгую саморегуляцию и развитие целого под управляющим воздействием биотических составляющих.[ ...]

Если сравнить химический состав живого и косного веществ Земли, то нетрудно увидеть их значительное несоответствие. Так, содержание углерода в живом веществе в 70 раз выше, чем в косном. Для живых существ характерна избирательность в поглощении элементов, необходимых для жизнедеятельности, что породило в биосфере проблему дефицита и ограничение количества живого вещества на Земле. Выходом из этого положения является круговорот, когда элемент, пройдя ряд биологических и химических превращений, возвращается в состав первоначального химического соединения.[ ...]

Эволюционный процесс присущ только живому веществу. В косном веществе нашей планеты нет его проявлений. Те же самые минералы и горные породы образовывались в криптозойской эре , какие образуются и теперь. Исключением являются биокосные природные тела , всегда связанные так или иначе с живым веществом.[ ...]

Главной отличительной особенностью живого вещества в целом является способ использования энергии. Живые существа - уникальные природные объекты, могущие улавливать энергию, которая приходит из Космоса преимущественно в виде солнечного света, удерживать ее в виде сложных органических соединений (биомассы), передавать друг другу, трансформировать в механическую, электрическую, тепловую и другие виды энергии. Косные (неживые) тела не способны к столь сложным преобразованиям энергии, они преимущественно рассеивают ее: камень нагревается под действием солнечной энергии, но не может ни сойти с места, ни увеличить свою массу.[ ...]

Масса биосферы, в которую включено все органическое вещество биогенного происхождения (сложная смесь природных органических соединений, основными первоисточниками которых являются растения, или, по определению В. И. Вернадского, вещество, создаваемое и перерабатываемое организмами) и косного вещества других сфер, занятых биосферой, оценивается в 2,5-3,0x1024 г. В биосфере на долю тропосферы приходится 0,004x1024 г, гидросферы - 1,4x1024 г и литосферы в пределах биосферы - 1,6x1024 г.[ ...]

Состояния пространства (симметрия), отвечающие живому веществу биосферы. Резкое отличие симметрии косных тел биосферы от симметрии ее живого вещества (§ 132, 133). Четырехмерное Эвклидово пространство- время, в котором время является четвертым измерением, и пространство- время Эйнштейна не имеют проявления в конкретных явлениях симметрии (§ 134). В живом веществе мы видим проявления не пространства только, но особого пространства - времени, отражающегося на их симметрии и выражающегося в смене поколений и в старении. Эволюционный процесс как проявление пространства - времени. Принцип Д. Дана (§ 137). Связь между живым и косным. Биогенная миграция атомов (§ 138).[ ...]

Существует несколько стандартов на питьевую воду, и мы коснемся четырех наиболее важных: российского стандарта, определяемого соответствующими ГОСТами , стандарта ВОЗ (Всемирной организации здравоохранения), стандарта США и стандарта стран Европейского Союза (ЕС). Три последних стандарта приведены в книге , благодаря которой мы можем получить информацию о том, что понимается под питьевой водой в Америке и Европе. Упомянутые мной издания построены примерно одинаково: вначале идут таблицы с перечислением вредных веществ и указанием ПДК, а затем описания методик, по которым определяется концентрация в воде того или иного компонента. В методиках подробно описано, с помощью каких реактивов и приборов и как конкретно производятся анализы. Отмечу, что в наших прежних ГОСТах таких методик около тридцати, а в книге вдвое больше.[ ...]

В биосфере происходят процессы преобразования неорганического, косного вещества в органическое и обратной перестройки органических веществ в минеральные. Движение и преобразование веществ в биосфере осуществляется при непосредственном участии живого вещества, все виды которого специализировались на различных способах питания.[ ...]

Выше, в главах XV и XVI, указано, что в явлениях жизни, в аспекте живого вещества, мы встречаемся с явлением, резко отличным от обычного косного вещества планеты и связанным с особым состоянием пространствавремени, что в сущности предвидел Л. Пастер в XIX столетии, - явления по существу космического характера.[ ...]

В предыдущей главе я глубже обосновал, что коренное отличие живого вещества от косного связано с особым состоянием пространства (§ 132-133), занимаемого его телами, и что это пространство не может быть Эвклидовым пространством трех измерений и ярко выражается как особое пространство - время. До сих пор мы не знаем пока других явлений на нашей планете, которые бы отвечали тоже неэвклидовому пространству (§ 144).[ ...]

Здесь мы встречаемся как раз с тем явлением, которое характеризует живое вещество планеты и резко химически отличает его от ее косного вещества. Оно заключается в следующем, В то самое время, как количество минералов - химических соединений, им отвечающих, - исчисляется немногими тысячами (§ 188), число различных природных органических соединений, строящих тело живого вещества, исчисляется сотнями тысяч, вернее миллионами, так как в них сказывается индивидуальность, которая в такой степени никогда не встречается в минералах, где есть индивидуальность месторождений, но не индивидуальность особей.[ ...]

КРУГОВОРОТ БИОГЕОХИМИЧЕСКИЙ - это перемещения и превращения химических элементов через косную и органическую природу при активном участии живого вещества. Химические элементы циркулируют в биосфере по различным путям биологического круговорота: поглощаются живым веществом и заряжаются энергией, затем покидают живое вещество, отдавая накопленную энергию во внешнюю среду. Такие в большей или меньшей степени замкнутые пути были названы В.И.Вернадским “биогеохимическими циклами". Эти циклы можно подразделить на два основных типа: 1) круговорот газообразных веществ с резервным фондом в атмосфере или гидросфере (океан) и 2) осадочный цикл с резервным фондом в земной коре. Во всех биогеохимических циклах активную роль играет живое вещество. По этому поводу В.И.Вернадский (1965, с. 127) писал: “Живое вещество охватывает и перестраивает все химические процессы биосферы, действенная его энергия огромна. Живое вещество есть самая мощная геологическая сила, растущая с ходом времени ”. К главным циклам можно отнести круговороты углерода, кислорода, азота, фосфора, серы и биогенных катионов. Ниже рассмотрим в качестве примера основные черты круговорота типичных биофильных элементов (углерода, кислорода и фосфора), играющих существенную роль в жизни биосферы.[ ...]

В.И. Вернадский рассматривал биосферу как область жизни, основа которой - взаимодействие живого и косного вещества: «живые организмы являются функцией биосферы и теснейшим образом материально и энергетически с ней связаны, являются огромной геологической силой, ее определяющей... Организмы представляют живое вещество, т.е. совокупность всех живых организмов, в данный момент существующих, численно выраженное в элементарном химическом составе, в весе, энергии. Оно связано с окружающей средой биогенным током атомов: своим дыханием, питанием, размножением». Таким образом, по мнению В.И. Вернадского, биогенная миграция атомов химических элементов, вызываемая солнечной энергией и проявляющаяся в процессе обмена веществ, роста и размножения организмов, является главной функцией биосферы.[ ...]

В конце концов все химические элементы Менделеевской таблицы, по-видимому, закономерно охвачены живым веществом. Это может служить косвенным подтверждением тому, что отличие живого и косного вещества планеты связано не с различием физико-химических проявлений, а с более общим различием состояния пространства-времени этих материал ьно-энергетических систем (§ И4).[ ...]

В биохимических функциях первого и второго рода мы впервые встречаемся в яркой форме с резким отличием косного и живого вещества в ходе геологического времени. В то самое время, как живое вещество меняется до неузнаваемости в своих формах и непрерывно и закономерно дает нам миллионы новых видов организмов и множество новых химических соединений, охваченное эволюционным процессом, косная материя планеты остается инертной, неподвижной и по характеру происходящих реакций только в эомы веков закономерно меняет свой атомный состав закономерным радиоактивным процессом, только что начинающим перед нами вскрываться (ч. I, гл. В геологическое время она практически остается неизменной в своем морфологическом характере. По сравнению с вечно подвижным и меняющимся химически и морфологически миром животных организмов, мир минералов остается неподвижным и неизменным с археозоя, за исключением биогенных минералов, которые создаются биохимической функцией второго рода (§ 195).[ ...]

Надо прежде всего построить ту геометрию, которая может соответствовать состоянию пространства живого вещества. При этом просто становится понятной обособленность живого вещества в окружающей его косной среде и принцип Реди , что живое всегда происходит из живого и что нет абиогенеза.[ ...]

Экосистема - единый природный комплекс, образованный живыми организмами и средой их обитания, в котором живые и косные компоненты связаны обменом веществ и энергии. Экосистема является саморазвивающейся термодинамически открытой системой. В отечественной литературе используется эквивалентное понятие "биогеоценоз".[ ...]

Точный учет - дело будущего. А пока приходится довольствоваться приблизительным учетом процентного содержания живого вещества в окружающей его косной природе. Такие подсчеты были мною несколько раз сделаны, и я приведу цифры для того, чтобы читатель имел ясное понятие, о чем идет речь.[ ...]

Говоря о токсической концентрации как о своеобразном индикаторе токсичности природно-антропогенных экосистем, нельзя не коснуться и таких важных понятий в экотоксикологии, как вредное вещество или токсикант - загрязнитель, метаболизм, канцерогенез, токсичность как результат избытка необходимых веществ и соединений, биогеохимические свойства токсикантов и их химически активные миграционные формы в окружающей природной среде.[ ...]

Почва (по В. И. Вернадскому) - биокосное тело природы, занимающее промежуточное положение между биологическими организмами и косными телами (горные породы, минералы). Является гигантской экологической системой, активно участвует в круговороте веществ и энергии в природе, поддерживает газовый состав атмосферы. Важнейшее свойство почвы - плодородие (способность обеспечить рост и размножение растений) нарушается в результате антропогенной деятельности: выпас скота, вспахивание, выращивание монокультур, уплотнение, нарушение гидрологического режима (уровня грунтовых вод), загрязнение. В связи с тем, что почва - это основа биологического круговорота, она становится источником миграции загрязненных веществ в гидросферу, атмосферу, в продукты питания (через растения и животных). Строительство дороги в результате указанных выше причин приводит к снижению плодородия почв.[ ...]

Это выражается в том, как я уже указал, что мы нигде не наблюдаем в природе абиогенеза - образования живого организма прямо из косной среды, что связь живого вещества с окружающей его косной средой проявляется только в биогенном токе атомов. Организмы размножаются поколениями, рождаются. Это процесс, как мы теперь знаем, длится миллиарды лет, и мы не знаем нигде на Земле следов времени, где бы живого вещества не было (§ 114-116).[ ...]

Под влиянием жизни значительная часть атомов, составляющих земную поверхность, находится в непрерывном, интенсивном движении. Живое вещество обладает способностью к пластичному изменению, приспособлению к изменениям среды, имеет свой процесс эволюции, проявляющийся в изменении с ходом геологического времени, вне зависимости от изменения среды. На протяжении геологического времени возрастает сила влияния живого вещества на биосферу, увеличивается его воздействие на косное вещество биосферы. Благодаря эволюции видов, непрерывно идущей и никогда не прекращающейся, резко меняется воздействие живого вещества на окружающую среду, распространяясь на все природные биокосные и биогенные тела, играющие основную роль в биосфере, в почвы, в наземные и подземные воды. Почвы и реки девона, например, иные, чем почвы третичного времени и нашей эпохи. Эволюция биосферы сама по себе вызывает усиление эволюционного процесса живого вещества.[ ...]

Можно проследить во всей биосфере, таким образом,- подчеркивает В. И. Вернадский,- порожденное жизнью движение молекул; оно охватывает собой всю стратосферу, всю область океанов, живую природу суши. Можно уловить его проявление в свободной атмосфере - в стратосфере и дальше до самой крайней границы планеты. Мы можем доказать его влияние далеко за пределами области жизни в глубоких слоях Земли, в совершенно для нас чуждых областях метаморфизма» . Огромная геохимическая роль живого вещества определяется тем, что элементы находятся в нем в более энергетическом состоянии (обусловленном аккумуляцией солнечной энергии), чем в косном веществе.[ ...]

Биогеоценоз (от био, греч. geo - земля и koinos - сообщество). Однородный участок земной поверхности с определенным составом живых (биоценозов) и косных (приземной слой атмосферы, солнечная энергия, почва и др.) компонентов, объединенных обменом вещества и энергии в единый природный комплекс. Термин предложен В.Н. Сукачевым. Совокупность биогеоценозов образует биогеоценотический noipoe земли, т.е. всю биосферу, а отдельный биогеоценоз представляет собой ее элементарную единицу.[ ...]

Все экологические факторы в общем случае могут быть разделены на две крупные категории: абиотические (или абиогенные) -факторы неживой или косной природы: климатические, космические, почвенные; биотические (или биогенные) - факторы живой природы. К абиотическим компонентам относятся вещество и энергия, к биотическим - гены, клетки, органы, организмы, популяции, сообщества.[ ...]

Таким образом, В. И. Вернадский подчеркивает планетарный и космический характер биосферы. Важнейшим положением учения о биосфере является то, что атомы из живого вещества переходят в косное вещество биосферы и обратно, т. е. происходит обмен веществ. Этот переход атомов выражается в непрекращаю-щемся никогда дыхании, питании, размножении, причем эти процессы поддерживаются и создаются космической энергией Солнца.[ ...]

В.И.Вернадский назвал биосферой оболочку Земли, в формировании которой живые организмы играли и играют основную роль. Он отмечал, что биосфера состоит из нескольких типов веществ: биогенного, косного, биокосного и живого. Биогенное вещество - геологические породы (уголь, нефть, известняк и др.), созданные деятельностью живых организмов и служащие мощным источником энергии. Косное вещество образовано в ходе процессов без участия живых тел.[ ...]

В.И. Вернадский подчеркивал, что «биосфера - это наружная оболочка Земли, область распространения жизни, включающая в себя все живые организмы, а также всю неживую среду их обитания, при этом между косными природными телами и живыми веществами идет непрерывный материальный и энергетический обмен, выражающийся в движении атомов, вызванном живым веществом. Этот обмен в ходе времени выражается закономерно меняющимся, непрерывно стремящимся к устойчивости равновесием». Далее в основном рассматриваются общие закономерности взаимоотношений природы и человеческого общества.[ ...]

Наряду с динамичностью, биогеоценозам присуща и устойчивость во времени, которая обусловлена тем, что современные природные биогеоценозы - результат длительной и глубокой адаптации живых компонентов друг к другу и к компонентам косной среды. Поэтому биогеоценозы, выведенные из устойчивого состояния той или иной причиной, после ее устранения могут восстанавливаться в форме, близкой к исходной, и вернуться снова к исходным уровням величины ассимиляции трофических уровней экологической пирамиды. Поэтому ввиду того, что ассимиляция является присущим всему, живому процессом, представляющим собой одну из сторон обмена веществ и энергии с образованием сложных веществ, составляющих организмы из более простых, и активно откликается на возмущения нооценозов, то привлечение ее для оценки нарушений, загрязнений, воздействий и преобразований нооценозами экологических систем представляется весьма оправданным подходом.[ ...]

Симметрия в системе наук как учение о геометрических свойствах состояний земных, т. е. геологических пространств, их сложности и неоднородности (§ 125). Логика естествознания. История симметрии: бытовое понимание и развитие его в науке. Разная симметрия живых веществ и природных косных тел (§ 126). Кристаллические пространства и федоровские группы (§ 127). Реальный и идеальный монокристалл. Проявления времени. Идеальные и реальные кристаллические пространства (§ 128). Диссимметрия Кюри и Пастера и состояния пространства (§ 129).[ ...]

Биосферой (греч. bios-жизнь, sphaira-шар) называют ту часть земного шара, в пределах которой существует жизнь, представляющую собой оболочку Земли, состоящую из атмосферы, гидросферы и верхней части литосферы, которые взаимно связаны сложными биохимическими циклами миграции вещества и энергии. Верхний предел жизни биосферы ограничен интенсивной концентрацией ультрафиолетовых лучей; нижний - высокой температурой земных недр (свыше 100° С). Крайних пределов ее достигают только низшие организмы - бактерии. В. И. Вернадский, создатель современного учения о биосфере, подчеркивал, что биосфера включает в себя собственно "живую пленку" Земли (сумму населяющих Землю в каждый данный момент живых организмов, "живое вещество" планеты) и область "былых сфер", очерченную распределением на Земле биогенных осадочных пород. Таким образом, биосфера - это специфическим образом организованное единство всего живого и минеральных элементов. Взаимодействие между ними проявляется в потоках энергии и вещества за счет энергии солнечного излучения. Биосфера является самой крупной (глобальной) экосистемой Земли - областью системного взаимодействия живого и косного вещества на планете. По определению В. И. Вернадского, "пределы биосферы обусловлены прежде всего полем существования жизни".[ ...]

В.И. Вернадский. По его определению, биосфера - наружная оболочка (сфера) Земли, область распространения жизни (bios -жизнь). По последним данным, толщина биосферы 40...50 км. Она включает нижнюю часть атмосферы (до высоты 25...30 км, т.е. до озонового слоя), практически всю гидросферу (реки, моря и океаны) и верхнюю часть земной коры - литосферу (до глубины 3 км). Важнейшими компонентами биосферы являются: живое вещество (растения, животные и микроорганизмы); биогенное вещество (органические и органоминеральные продукты, созданные живыми организмами на протяжении геологической истории, -каменный уголь, нефть, торф и др.); косное вещество (горные породы неорганического происхождения и вода); биокосное вещество (продукт синтеза живого и неживого, т.е. осадочные породы, почвы, илы). Вернадский доказал, что все три оболочки Земли связаны с живым веществом, которое оказывает непрерывное воздействие на неживую природу.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Свекольные котлеты как в детском саду Свекольные котлеты как в детском саду Гуляш из индейки с подливкой Гуляш из индейки с подливкой Сколько калорий в вареной картошке Сколько калорий в вареной картошке