Ультразвуковое исследование глаза: что это такое и для чего применяется. УЗИ глаза: как делается, что показывает Почему возникает миопия

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Ткани глазного яблока - совокупность акустически разнородных сред. При попадании ультразвуковой волны на границу раздела двух сред происходит её преломление и отражение. Чем больше различаются акустические сопротивления (импедансы) пограничных сред, тем большая часть падающей волны отражается. На явлении отражения ультразвуковых волн основано определение топографии нормальных и патологически изменённых биосред.

УЗИ используется для диагностики прижизненных измерений глазного яблока и его анатомо-оптических элементов. Это высокоинформативный инструментальный метод, дополнение к общепризнанным клиническим методам офтальмологической диагностики. Как правило, эхографии должно предшествовать традиционное анамнестическое и клиникоофтальмологическое обследование больного.

Исследование эхобиометрических (линейных и угловых величин) и анатомо-топографических (локализация, плотность) характеристик проводят по основным показаниям. К ним относят следующее.

  • Необходимость измерения толщины роговицы, глубины передней и задней камер, толщины хрусталика и внутренних оболочек глаза, протяжённости СТ , различных других внутриглазных дистанций и величины глаза в целом (например, при инородных телах в глазу, субатрофии глазного яблока, глаукоме, близорукости, при расчёте оптической силы интраокулярных линз (ИОЛ)).
  • Изучение топографии и строения угла передней камеры (УПК). Оценка состояния хирургически сформированных путей оттока и УПК после антиглаукомных вмешательств.
  • Оценка положения ИОЛ (фиксация, дислокация, сращения).
  • Измерение протяжённости ретробульбарных тканей в различных направлениях, толщины зрительного нерва и прямых мышц глаза.
  • Определение величины и изучение топографии патологических изменений, в том числе новообразований глаза, ретробульбарного пространства; количественная оценка этих изменений в динамике. Дифференциация различных клинических форм экзофтальма.
  • Оценка высоты и распространённости отслойки цилиарного тела, сосудистой и сетчатой оболочек глаза при затруднённой офтальмоскопии.
  • Выявление деструкции, экссудата, помутнений, сгустков крови, шварт в СТ, определение особенностей их локализации, плотности и подвижности
  • Выявление и определение локализации внутриглазных инородных тел, в том числе клинически невидимых и рентгенонегативных, а также оценка степени их капсулированности и подвижности, магнитных свойств.

Принцип работы

Эхографическое исследование глаза проводят контактным или иммерсионным способами.

Контактный способ

Контактную одномерную эхографию проводят следующим образом. Больного усаживают в кресло слева и несколько спереди от диагностического ультразвукового прибора лицом к врачу, сидящему перед экраном прибора вполуоборот к больному. В некоторых случаях проведение УЗИ возможно при положении больного лёжа на кушетке лицом вверх (врач располагается у изголовья больного).

Перед исследованием в конъюнктивальную полость исследуемого глаза инстиллируют анестетик. Правой рукой врач приводит ультразвуковой зонд, стерилизованный 96% этанолом, в соприкосновение с исследуемым глазом пациента, а левой регулирует работу прибора. Контактной средой является слёзная жидкость.

Акустическое исследование глаза начинают с обзора, используя зонд с диаметром пьезопластины 5 мм, а окончательное заключение дают после детального осмотра при помощи зонда с диаметром пьезопластины 3 мм.

Иммерсионный способ

Иммерсионный способ акустического исследования глаза предполагает наличие слоя жидкости или геля между пьезопластиной диагностического зонда и исследуемым глазом. Чаще всего этот способ реализуют с помощью ультразвуковой аппаратуры, основной на использовании В-метода эхографии. Сканирующий по различной траектории диагностический зонд «плавает» в иммерсионной среде (дегазированная вода, изотонический раствор натрия хлорида), находящейся в специальной насадке, которая устанавливается на глаз исследуемого. Диагностический зонд также может находиться в кожухе со звукопрозрачной мембраной, которая приводится в соприкосновение с прикрытыми веками пациента, сидящего в кресле. Инстилляционная анестезия в этом случае не нужна.

Методика исследования

  • Одномерная эхография (А-метод) - довольно точный метод, позволяющий в графическом режиме выявить разнообразные патологические изменения и образования, а также измерять размеры глазного яблока и его отдельные анатомо-оптические элементы и структуры. Метод модифицирован в отдельное специальное направление - ультразвуковую биометрию .
  • Двухмерная эхография (акустическое сканирование, В-метод) - основана на преобразовании амплитудной градации эхосигналов в светлые точки различной степени яркости, формирующие изображение сечения глазного яблока на мониторе.
  • УБМ . Цифровые технологии позволили разработать метод УБМ, основанный на цифровом анализе сигнала каждого пьезоэлемента датчика. Разрешающая способность УБМ при аксиальной плоскости сканирования составляет 40 мкм. Для такого разрешения используют датчики 50-80 МГц.
  • Трёхмерная эхография . Трёхмерная эхография воспроизводит объёмное изображение при сложении и анализе множества плоскостных эхограмм или объёмов во время движения плоскости сканирования по вертикали-горизонтали или концентрически вокруг её центральной оси. Получение объёмного изображения происходит либо в режиме реального времени (интерактивно), либо отсроченно в зависимости от датчиков и мощности процессора.
  • Энергетическая допплерография (энергетическое допплеровское картирование) - способ анализа потока крови, заключается в отображении многочисленных амплитудных и скоростных характеристик эритроцитов, так называемых энергетических профилей.
  • Импульсно-волновая допплерография позволяет объективно судить о скорости и направлении кровотока в конкретном сосуде, исследовать характер шумов.
  • Ультразвуковое дуплексное исследование. Объединение в одном приборе импульсной допплерографии и сканирования в режиме серой шкалы позволяет одновременно оценивать состояние сосудистой стенки и регистрировать гемодинамические показатели. Основной критерий оценки гемодинамики - линейная скорость кровотока (см/с).

Алгоритм акустического исследования глаза и орбиты заключается в последовательном применении принципа взаимодополняемости (комплементарности) обзорной, локализационной, кинетической и квантитативной эхографии.

  • Обзорную эхографию выполняют, чтобы выявить асимметрию и очаг патологии.
  • Локализационная эхография позволяет с помощью эхобиометрии измерять различные линейные и угловые параметры внутриглазных структур и формирований и определять их анатомо-топографические соотношения.
  • Кинетическая эхография состоит из серии повторных УЗИ после быстрых движений глаза обследуемого (изменения направления взгляда пациента). Кинетическая проба позволяет установить степень подвижности обнаруженных формирований.
  • Квантитативная эхография даёт косвенное представление об акустической плотности изучаемых структур, выраженной в децибелах. Принцип основан на постепенном уменьшении эхосигналов до полного их гашения.

Задача предварительного УЗИ - визуализация основных анатомо-топографических структур глаза и орбиты. С этой целью в режиме серой шкалы сканирование проводят в двух плоскостях:

  • горизонтальной (аксиальной), проходящей через роговицу, глазное яблоко, внутреннюю и наружную прямые мышцы, зрительный нерв и вершину орбиты;
  • вертикальной (сагиттальной), проходящей через глазное яблоко, верхнюю и нижнюю прямые мышцы, зрительный нерв и вершину орбиты.

Обязательное условие, обеспечивающее наибольшую информативность УЗИ, - ориентация зонда под прямым (или близким к прямому) углом до отношению к исследуемой структуре (поверхности). При этом регистрируется идущий от исследуемого объекта эхосигнал максимальной амплитуды. Сам зонд не должен оказывать давления на глазное яблоко.

При осмотре глазного яблока необходимо помнить о его условном разделении на четыре квадранта (сегмента): верхне- и нижненаружные, верхне- и нижневнутренние. Особо выделяют центральную зону глазного дна с расположенными в ней ДЗН и макулярной областью.

Характеристики в норме и патологии

При прохождении плоскости сканирования ориентировочно вдоль переднезадней оси глаза получают эхосигналы от век, роговицы, передней и задней поверхности хрусталика, сетчатки. Прозрачный хрусталик акустически не выявляется. Визуализируется более чётко его задняя капсула в виде гиперэхогенной дуги. СТ в норме, акустически прозрачно.

При сканировании сетчатка, хориоидея и склера фактически сливаются в единый комплекс. При этом внутренние оболочки (сетчатая и сосудистая) имеют чуть меньшую акустическую плотность, чем гиперэхогенная склера, а их толщина вместе составляет 0,7-1,0 мм.

В этой же плоскости сканирования видна воронкообразная ретробульбарная часть, ограниченная гиперэхогенными костными стенками орбиты и заполненная мелкозернистой жировой клетчаткой средней или несколько повышенной акустической плотности. В центральной зоне ретробульбарного пространства (ближе к носовой части) визуализируется зрительный нерв в виде гипоэхогенной трубчатой структуры шириной около 2,0-2,5 мм, исходящей из глазного яблока с носовой стороны на расстоянии 4 мм от его заднего полюса.

При соответствующей ориентации датчика, плоскости сканирования и направления взгляда получают изображение прямых мышц глаза в виде однородных трубчатых структур с меньшей акустической плотностью, чем жировая клетчатка, толщиной между фасциальными листками 4,0-5,0 мм.

При подвывихе хрусталика наблюдают различную степень смещения одного из его экваториальных краёв в СТ. При вывихе хрусталик выявляется в различных слоях СТ или на глазном дне. Во время кинетической пробы хрусталик либо свободно перемещается, либо остаётся фиксированным к сетчатке или фиброзным тяжам СТ. При афакии во время УЗИ наблюдают дрожание потерявшей опору радужки.

При замене хрусталика искусственной ИОЛ за радужкой визуализируется образование высокой акустической плотности.

В последние годы большое значение придают эхографическому исследованию структур УПК и иридоцилиарной зоны в целом. С помощью УБМ выделено три основных анатомо-топографических типа строения иридоцилиарной зоны в зависимости от вида клинической рефракции.

  • Гиперметропический тип характеризуется выпуклым профилем радужки, малым иридокорнеальным углом (17±4,05°), характерным переднемедиальным прикреплением корня радужки к цилиарному телу, обеспечивающим клювовидную форму УПК с узким входом (0,12 мм) в бухту угла и очень близким расположением радужки с трабекулярной зоной. При таком анатомо-топографическом типе возникают благоприятные условия для механической блокады УПК тканью радужки.
  • Миопические глаза с обратным профилем радужки, иридокорнеальным углом (36,2+5,25°), большой площадью контакта пигментного листка радужки с цинновьми связками и передней поверхностью хрусталика имеют предрасположенность к развитию пигментного дисперсного синдрома.
  • Эмметропические глаза - наиболее часто встречаемый тип, характеризуются прямым профилем радужки со средней величиной УПК 31,13±6,24°, глубиной задней камеры 0,56±0,09 мм, относительно широким входом в бухту УПК - 0,39±0,08 мм, переднезадней осью - 23,92+1,62 мм. При такой конструкции иридоцилиарной зоны нет явной предрасположенности к нарушениям гидродинамики, т.е. нет анатомо-топографических условий для развития зрачкового блока и пигментно-дисперсного синдрома.

Изменение акустических характеристик СТ возникает вследствие дегенеративно-дистрофических, воспалительных процессов, кровоизлияний и пр. Помутнения могут быть плавающими и фиксированными; точечными, плёнчатыми, в виде глыбок и конгломератов. Степень помутнений варьирует от слабозаметных до грубых шварт и выраженного сплошного фиброза.

При интерпретации данных УЗИ гемофтальма следует помнить о стадиях его течения

  • Стадия I - соответствует процессам гемостаза (2-3 сут с момента кровоизлияния) и характеризуется наличием в СТ свернувшейся крови умеренной акустической плотности.
  • Стадия II - стадия гемолиза и диффузии кровоизлияния, сопровождается снижением его акустической плотности, размытостью контуров. В процессе рассасывания на фоне гемолиза и фибринолиза появляется мелкоточечная взвесь, часто отграниченная от неизменённой части СТ тонкой плёнкой. В ряде случаев в стадии гемолиза эритроцитов УЗИ оказывается неинформативным, так как элементы крови соразмерны длине ультразвуковой волны и зона кровоизлияния не дифференцируется.
  • Стадия III - стадия начальной соединительнотканной организации, наступает в случаях дальнейшего развития патологического процесса (повторные кровоизлияния) и характеризуется наличием локальных зон повышенной плотности.
  • Стадия IV - стадия развитой соединительнотканной организации или швартообраэоваиия, характеризуется формированием шварт и плёнок высокой акустической плотности.

При отслойке СТ эхографичеcки визуализируется мембрана повышенной акустической плотности, соответствующая её плотному пограничному слою, отделённая от сетчатки акустически прозрачным пространством.

Клиническая симптоматика, указывающая на вероятность отслойки сетчатки - одно из основных показаний к УЗИ. При A-методе эхографии диагноз отслойки сетчатки основывается на стойкой регистрации изолированного эхосигнала от отслоенной сетчатки, отделяющегося участком изолинии от эхосигналов комплекса склера плюс ретробульбарные ткани. По этому показателю судят о высоте отслойки сетчатки. При В-методе эхографии отслойка сетчатки визуализируется в виде плёнчатого образования в СТ, как правило, имеющего контакт с оболочками глаза в проекции зубчатой линии и ДЗН. В отличие от тотальной при локальной отслойке сетчатки патологический процесс занимает определённый сегмент глазного яблока или его часть. Отслойка может быть плоской, высотой 1-2 мм. Локальная отслойка может быть и более высокой, иногда куполообразной, в связи с чем возникает необходимость её дифференциации от кисты сетчатки.

Одно из важных показаний к эхографическому исследованию - развитие отслойки сосудистой оболочки и цилиарного тела, в некоторых случаях возникающей после антиглаукомных операций, экстракции катаракты, контузии и проникающих ранений глазного яблока, при увеитах. В задачу исследователя входит определение квадранта её расположения и динамики течения. Для обнаружения отслойки цилиарного тела производят сканирование крайней периферии глазного яблока в различных проекциях при максимальном угле наклона датчика без водной насадки. При наличии датчика с водной насадкой исследуют передние отделы глазного яблока в поперечных и продольных срезах.

Отслоённое цилиарное тело визуализируется как плёнчатая структура, расположенная на 0,5-2,0 мм глубже склеральной оболочки глаза в результате распространения под него акустически гомогенного транссудата или водянистой влаги.

Ультразвуковые признаки отслойки сосудистой оболочки довольно специфичны: визуализируется от одного до нескольких чётко контурированных плёнчатых бугров различной высоты и протяжённости, при этом между отслоёнными участками всегда есть перемычки, где сосудистая оболочка по-прежнему фиксирована к склере: при кинетической пробе пузыри неподвижны. В отличие от отслойки сетчатки контуры бугров обычно не примыкают к зоне ДЗН.

Отслойка сосудистой оболочки может занимать все сегменты глазного яблока от центральной зоны до крайней периферии. При резко выраженной высокой отслойке пузыри хориоидеи сближаются друг с другом и дают картину «целующейся» отслойки сосудистой оболочки.

Необходимое условие для визуализации инородного тела - различие в акустической плотности материала инородного тела и окружающих его тканей. При A-методе на эхограмме возникает сигнал от инородного тела, по которому можно судить о его локализации в глазу. Важный для дифференциальной диагностики критерий - немедленное исчезновение эхосигнала с инородного тела при минимальном изменении угла зондирования. Благодаря своему составу, форме и размерам инородные тела могут вызывать различные ультразвуковые эффекты, например «хвост кометы». Для визуализации осколков в переднем отделе глазного яблока лучше использовать датчик с водной насадкой.

Как правило, в нормальном состоянии ДЗН при УЗИ не дифференцируется. Возможность оценки состояния ДЗН как в норме, так и при патологий расширилась с внедрением методов цветового допплеровского картирования и энергетического картирования.

При застойных явлениях вследствие невоспалительного отёка на В-сканограммах ДЗН увеличивается в размерах, проминирует в полость СТ. Акустическая плотность отёчного диска низкая, лишь поверхность выделяется в виде гиперэхогенной полосы.

Среди внутриглазных новообразований , создающих в глазу эффект «плюс-ткани», с наибольшей частотой встречаются меланома сосудистой оболочки и ресничного тела (у взрослых) и ретинобластома (РБ) (у детей). При A-методе исследования новообразование выявляется в виде комплекса эхосигналов, сливающихся друг с другом, но никогда не снижающихся до изолинии, что отражает определённое акустическое сопротивление однородного морфологического субстрата новообразования. Развитие в меланоме участков некроза, сосудов, лакун эхографически верифицируется увеличением разницы в амплитудах эхосигналов. При В-методе основной признак меланомы - присутствие на сканограмме чёткого контура, соответствующего границам опухоли, при этом акустическая плотность самого образования может быть различной степени гомогенности.

При акустическом сканировании определяют локализацию, форму, чёткость контуров, размеры опухоли, количественно оценивают её акустическую плотность (высокая, низкая), качественно - характер распределения плотности (гомогенный или гетерогенный).

Таким образом, возможности применения диагностического ультразвука в офтальмологии постоянно расширяются, что обеспечивает динамизм и преемственность развития данного направления.

Цель: изучить динамику ПЗО с учетом рефракции здоровых глаз у здоровых детей в возрасте от 1 мес. до 7 лет и сравнить с ПЗО глаз с врожденной глаукомой у детей того же возраста.
Материал и методы: исследования проведены на 132 глазах с врожденной глаукомой и на 322 здоровых глазах. По возрасту дети с врожденной глаукомой и со здоровыми глазами распределялись согласно классификации Э.С. Аветисова (2003). Так, с глаукомой было 30 новорожденных (55 глаз), детей до 1 года - 25 (46 глаз), до 3 лет - 55 (31 глаз). Среди исследуемых со здоровыми глазами: новорожденные - 30 глаз, до 1 года - 25 глаз, до 3 лет - 55 глаз, 4-6 лет - 111 глаз, 7-14 лет - 101 глаз. Были использованы следующие методы исследования: тонометрия, тонография по Нестерову и эластотонометрия, биомикроскопия, гониоскопия, офтальмоскопия, А/В-сканирование на аппарате ODM-2100 Ultrasonik A/В scanner for oрhthalmology.
Результаты и выводы: изучив нормальные ПЗО глаз в различные возрастные периоды, мы выявили значительный размах колебаний показателей ПЗО, крайние показатели которых могут соответствовать патологическим. Увеличение размера передне-задней оси глаза при врожденной глаукоме зависит не только от нарушения гемогидродинамических процессов глаза с накоплением внутриглазной жидкости, но и от возрастной динамики патологического роста глаза и степени рефракции.
Ключевые слова: передне-задняя ось глаза, врожденная глаукома.

Abstract
Comparative analysis of the anterior-posterior axes of eyes of patients with congenital glaucoma and healthy
patients taking into consideration of the age aspect
Yu.A. Khamroeva, B.T. Buzrukov

Pediatric medical institute, Tashkent, Uzbekistan
Purpose: To study the dynamics of the APA in healthy children taking into consideration the refraction of healthy eyes aged from one month to seven years, compared to APA of patients with congenital glaucoma of the same age.
Methods: The study was performed on 132 eyes with congenital glaucoma and 322 of healthy eyes. Patients with congenital glaucoma and healthy subjects were distributed by age according to the classification of E.S. Avetisov (2003), 30 newborns (55 eyes), 25 patients under 1 year old (46 eyes) of, 55 healthy patients under 3 years old, (31 eyes) and newborns (30 eyes), under 1 year (25 eyes), under 3 years (55 eyes), 4-6 years old (111 eyes), from 7 to 14 years old (101 eyes). Tonometry, tonography, elastotonometry, biomicroscopy, gonioscopy, ophthalmoscopy, A/B scanning were performed.
Results and conclusion: there were significant amplitude of the APAindices revealed in patients of various ages. The extreme values may indicate the pathology. Increase of APA size in congenital glaucoma depends not only on a disparity of hydrodynamic processes but also on age dynamics of eye growth and refraction.
Key words: anterior-posterior axis (APA) of the eye, congenital glaucoma.

Введение
В настоящее время установлено, что главным пусковым механизмом развития глаукоматозного процесса является повышение внутриглазного давления (ВГД) до уровня выше целевого. ВГД является важной физиологической константой глаза. Известны несколько видов регуляции ВГД . Вместе с тем на точные показатели ВГД, особенно у детей, влияют несколько анатомо-физиологических факторов, основными из которых являются объем глаза и размер его передне-задней оси (ПЗО). Исследования последних лет показывают, что одним из ключевых факторов развития глаукоматозного поражения может быть изменение биомеханической устойчивости соединительнотканных структур глаза не только в области диска зрительного нерва (ДЗН), но и фиброзной капсулы в целом . В пользу этого утверждения свидетельствует постепенное истончение склеры и роговицы .
Цель: изучить динамику ПЗО с учетом рефракции здоровых глаз у здоровых детей в возрасте от 1 мес. до 7 лет и сравнить с ПЗО глаз с врожденной глаукомой у детей того же возраста.
Материал и методы
Исследования проведены на 132 глазах с врожденной глаукомой и на 322 здоровых глазах. Дети распределялись по возрасту согласно классификации Э.С. Аветисова (2003): с врожденной глаукомой: новорожденные - 30 больных (55 глаз), до 1 года - 25 (46 глаз), до 3 лет - 55 (31 глаз); дети со здоровыми глазами: новорожденные - 30 глаз, до 1 года - 25 глаз, до 3 лет - 55 глаз, 4-6 лет - 111 глаз, 7-14 лет - 101 глаз.
Были использованы следующие методы исследования: тонометрия, тонография по Нестерову и эластотонометрия, биомикроскопия, гониоскопия, офтальмоскопия. А/В-сканирование на аппарате ODM-2100 Ultrasonik A/C scanner for opfhthalmology. По стадиям заболевания и возрасту больные с врожденной глаукомой распределились следующим образом (табл. 1).
Результаты и обсуждение
Несмотря на то, что имеются данные о средних величинах анатомо-оптических элементов здоровых глаз, в том числе передне-задней оси глаз (ПЗО) в возрасте от новорожденности до 25 лет (Аветисов Э.С., с соавт., 1987) и от новорожденности до 14 лет (Аветисов Э.С., 2003, табл. 2), в Республике Узбекистан подобные исследования ранее не проводились. Поэтому было решено выполнить эхобиометрические исследования показателей ПЗО на 322 здоровых глазах у детей в возрасте от 1 мес. до 7 лет с учетом степени рефракции глаза и сравнить полученные данные с результатами аналогичных исследований на глазах с врожденной глаукомой (132 глаза) у детей того же возраста. Результаты исследований представлены в таблице 3.
Показатели ПЗО в норме почти во всех возрастных группах, кроме новорожденных, практически совпали с данными, приведенными в таблице Э.С. Аветисова (2003).
В таблице 4 представлены данные ПЗО глаз в норме в зависимости от рефракции и возраста.
Относительная зависимость степени рефракции от укорочения ПЗО глаза отмечалась только с 2 лет (на 1,8-1,9 мм).
Известно, что при исследовании ВГД на глазах с врожденной глаукомой возникают сложности при определении того, насколько данное ВГД характеризирует нормальные гидродинамические процессы или их патологию. Это связано с тем, что у маленьких детей оболочки глаза мягкие, легкорастяжимые. По мере накопления внутриглазной жидкости они растягиваются, глаз увеличивается в объеме, и ВГД остается в пределах нормальных значений. Вместе с тем этот процесс приводит к метаболическим нарушениям, повреждая волокна зрительного нерва и ухудшая обменные процессы в ганглиозных клетках. Кроме того, необходимо четко дифференцировать патологический и естественный, связанным с возрастом, рост глаз ребенка.
Изучив нормальные показатели ПЗО глаз в различные возрастные периоды, мы обнаружили, что крайние значения этих показателей могут соответствовать значениям при патологии. Для того чтобы четко определить, патологическим ли является растяжение глазного яблока, мы одновременно проанализировали связь показателей ПЗО с ВГД, рефракцией, наличием глаукоматозной экскавации, ее размерами и глубиной, горизонтальным размером роговицы и ее лимба.
Так, при развитой стадии заболевания у 10 глаз новорожденных при ПЗО=21 мм тонометрическое давление (Pt) составило 23,7±1,6 мм рт. ст. (р≤0,05), экскавация диска - 0,3±0,02 (р≤0,05); у детей до 1 года (36 глаз) при ПЗО=22 мм Pt было равно 26,2±0,68 мм рт. ст. (р≤0,05), экскавация диска - 0,35±0,3 (р≤0,05). У детей до 3 лет (10 глаз) при ПЗО=23,5 мм Pt достигло 24,8±1,5 мм рт. ст. (р≥0,05), экскавация диска - 0,36±0,1 (р≤0,05). Размер ПЗО глаз превышал среднестатистическую норму на 2,9, 2,3 и 2,3 мм соответственно в каждой возрастной группе.
При далеко зашедшей стадии глаукомы у детей до 1 года (45 глаз) размер ПЗО составил 24,5 мм, Pt - 28,0±0,6 мм рт. ст. (р≤0,05), экскавация диска - 0,5±0,04 (р≤0,05), у детей до 2 лет (10 глаз) при ПЗО 26 мм Pt достигло 30,0±1,3 мм рт. ст. (р≤0,05), экскавация диска - 0,4±0,1 (р≤0,05). У детей до 3 лет (11 глаз) при ПЗО 27,5 мм Pt было равно 29±1,1 мм рт. ст. (р≤0,05), экскавация диска - 0,6±0,005 (р≤0,05). При терминальной стадии (10 глаз) при ПЗО 28,7 мм Pt составило 32,0±1,2 мм рт. ст. (р≥0,05), экскавация диска - 0,9±0,04 (р≤0,05). У этих детей размер ПЗО глаз превышал среднестатистическую норму на 4,7, 4,8, 6,3 мм, а при терминальной стадии - на 7,5 мм.

Выводы
1. Увеличение размера ПЗО глаза при врожденной глаукоме зависит не только от нарушения гемогидродинамических процессов глаза с накоплением внутриглазной жидкости, но и от возрастной динамики патологического роста глаза и степени рефракции.
2. Диагностика врожденной глаукомы должна основываться на данных обследования, таких как результаты эхобиометрии, гониоскопии, ВГД с учетом ригидности фиброзной оболочки глаза и начинающейся глаукоматозной оптической нейропатии.






Литература
1. Акопян А.И., Еричев В.П., Иомдина Е.Н. Ценность биомеханических параметров глаза в трактовке развития глаукомы, миопии и сочетанной патологии // Глаукома. 2008. №1. С. 9-14.
2. Арутюнян Л.Л. Роль вязко-эластических свойств глаза в определении давления цели и оценке развития глаукоматозного процесса: Автореф. дис. … канд. мед. наук. М., 2009. 24 с.
3. Бузыкин М.А. Ультразвуковая анатомо-физиологическая картина аккамодационного аппарата глаза у лиц молодого возраста in vivo: Автореф. дис. … канд. мед. наук. СПб., 2005.
4. Волков В.В. Трехкомпонентная классификация открытоугольной глаукомы // Глаукома, 2004. №1. С.57-68.
5. Гулидова Е.Г., Страхов В.В. Аккомодации и гидродинамика миопического глаза // Российский общенациональный офтальмологический форум: Сб. научных трудов. М., 2008. С. 529-532.
6. Козлов В.И. Новый метод изучения растяжимости и эластичности глаза при изменении офтальмотонуса // Вест. офтальмол. 1967. № 2. С. 5-7.
7. European Glaucoma Prevention Study Group (EGPS). Central Corneal Thickness in the European Glaucoma Prevention Study Group // Ophthalmology. 2006. Vol. 22. P. 468-470.
8. Kobayashi H., Ono H., Kiryu J. et al. Ultrasound biomicroscopic measurement of development af anterior chamber angl // Br J. Ophthalmol. 1999.Vol. 83. N 5. P. 559-562.
9. Pavlin C.J., Harasiewecz K., Foster F.S. Eye cup for ultrasound biomicroscopy // Ophthalmic Surg. 1994. Vol. 25, N. 2. P. 131-132.
10. Rogers D.L., Cantor R.N., Catoira Y. et al. Central Corneal Thickness and visual field loss in fellow eyes of patients with open-anle glaucoma // Am. J. Ophthalmol. 2007. Vol. 143. N 1. P.159-161.

Ультразвуковое исследование глаза – расширенный диагностический метод, в основе которого лежит принцип эхолокации.

Процедура используется для уточнения поставленного диагноза в случае обнаружения офтальмологических патологий и определения их количественных значений.

Что такое УЗИ глаза?

УЗИ глазного яблока и орбит глаза позволяет определить участки локализации патологических процессов, которые удается определить за счет отражения от таких областей посылаемых волн высокой частоты.

Способ отличается быстрым и простым выполнением и практически полным отсутствием предварительной подготовки.

При этом офтальмолог получает максимально полную картину состояния тканей глаза и глазного дна, а также может оценить строение мышц глаза и увидеть нарушения в строении сетчатки.

Это не только диагностическая, но и профилактическая процедура, которая в большинстве случаев выполняется как после оперативных вмешательств, так и до них с целью оценки рисков и назначения оптимального лечения.

Показания для применения данного метода

  • помутнения различного характера;
  • присутствие в органах зрения инородных тел с возможностью определения их точных размеров и местоположения;
  • новообразования и опухоли различного характера;
  • дальнозоркость и близорукость;
  • катаракты;
  • глаукомы;
  • вывих хрусталика;
  • патологии зрительного нерва;
  • отслоение сетчатки;
  • спайки в тканях стекловидного тела и нарушения в его строении;
  • травмы с возможностью определения их степени тяжести и характера;
  • нарушения в работе мышц глаза;
  • любые наследственные, обретенные и врожденные аномалии строения глазного яблока;
  • кровоизлияния в глазу.

Помимо этого ультразвуковое исследование позволяет определить изменения характеристик оптических сред глаза и оценить размеры глазницы.

А также УЗИ помогает произвести замеры толщины жировой клетчатки и их состав, что является необходимой информацией при дифференцировании форм экзофтальма («пучеглазие»).

Противопоказания

  • открытые травмы глазного яблока с нарушением целостности его поверхности;
  • кровоизлияния в ретробульбарную область;
  • любые повреждения в области глаз (в том числе – травмы век).

Что показывает УЗИ глаза: какие патологии можно выявить

УЗИ глаза показывает множество офтальмологических заболеваний, в частности можно диагностировать такие заболевания, как нарушения рефракции (дальнозоркость, близорукость, астигматизм), глаукома, катаракта, патологии зрительного нерва, дистрофические процессы сетчатки глаза, наличие опухолей и новообразований.

Также посредством проведения процедуры можно контролировать состояния патологий в процессе лечения, а также любые офтальмологические воспалительные процессы и патологические изменения тканей хрусталика.

Как делается УЗИ глаза?

В современной офтальмологической практике применяется несколько видов ультразвукового исследования, каждый из которых призван выполнять определенные задачи и делается с использованием собственных технических особенностей:

В В-режиме обезболивание не требуется, так как специалист водит датчиком по веку закрытого глаза, и для обеспечения нормального проведения процедуры достаточно смазать веко специальным гелем, который будет облегчать такое скольжение.

Норма показателей здорового глаза при УЗИ

После проведения процедуры УЗИ специалист передает заполненную карту пациента лечащему врачу, который расшифровывает показания.

Нормальными показаниями при проведении процедуры считаются:

Полезное видео

В данном видео показано УЗИ глаза:

Незначительные отклонения этих характеристик допустимы, но если значения выходят далеко за рамки таких показателей – это повод пройти дополнительные обследования с целью подтверждения заболевания и назначения пациенту адекватного лечения.

Причины близорукости

Сегодня это явление встречается очень часто. Данные статистики констатируют, что около миллиарда жителей земного шара страдают близорукостью. Ее офтальмологи диагностируют в любом возрасте. Однако впервые ее обнаруживают у детей от 7 до 12 лет, а усиливается недуг в подростковом периоде. В возрасте от 18 до 40 лет, как правило, острота зрения стабилизируется. Итак, узнаем о причинах возникновения близорукости.

Коротко о недуге

Второе название заболевания, которым пользуются медики, - миопия. Она представляет собой нарушение зрения, при котором пациент отлично видит близко расположенные предметы и плохо те, которые находятся на расстоянии. Термин „близорукость” был введен еще Аристотелем, заметившим, что люди, плохо видящие вдаль, прищуривают миопс.

Если говорить языком офтальмологов, то миопия является патологией рефракции глаз, когда изображение предметов возникает перед сетчаткой. У таких людей увеличена длина глаза либо роговица обладает большой преломляющей силой. Поэтому и возникает рефракционная близорукость. Практика показывает, что чаще всего эти две патологии сочетаются. При близорукости острота зрения снижается.

Классифицируют близорукость на сильную, слабую, среднюю.

Почему возникает миопия

Причин развития близорукости офтальмологи называют несколько. Вот основные из них:

  1. Неправильность формы глазного яблока. При этом длина переднезадней оси органа зрения больше нормы, и при фокусировании световые лучи просто не достигают сетчатки. Удлиненная форма глазного яблока - это растяжение задней стенки глаза. Такое состояние системы зрения может изменять глазное дно, например, способствовать отслоению сетчатки, миопическому конусу, дистрофическим нарушениям в макулярной зоне.
  2. Чрезмерное преломление световых лучей оптической глазной системой. Размеры глаза при этом соответствуют норме, однако сильное преломление заставляет световые лучи сходиться в фокус перед сетчаткой глаза, а не традиционно на ней.

Кроме этих причин миопии офтальмологи также выделяют и факторы, способствующие развитию данного глазного заболевания. Это следующие обстоятельства:

  1. Генетическая предрасположенность. Специалисты в области офтальмологии констатируют, что люди наследуют не плохое зрение, а физиологическую склонность к нему. И первыми в группе риска оказываются те пациенты, у которых и папа, и мама подвержены близорукости. Если же миопия присуща только одному из родителей, то шансы формирования заболевания у их сына или дочери снижаются на 30 процентов.
  2. Ослабление тканей склеры часто увеличивает размер глазного яблока под действием повышенного внутриглазного давления. Следствием этого и является развитие у человека близорукости.
  3. Слабость аккомодации, которая приводит к растяжению глазного яблока.
  4. Общее ослабление организма как основа формирования близорукости. Оно часто бывает результатом и переутомления, и неправильного питания.
  5. Наличие в организме аллергических и инфекционных заболеваний (дифтерия, скарлатина, корь, гепатит).
  6. Родовые и травмы головного мозга.
  7. Болезни носоглотки и полости рта в виде тонзиллитов, аденоидов, гайморитов.
  8. Неблагоприятные условия функционирования зрительной системы. К ним офтальмологи относят чрезмерную нагрузку на глаза, их перенапряжение; чтение в транспорте, который двигается, в темноте, в положении лежа; многочасовое и без перерывов просиживание за экраном компьютера или телевизора; слабое освещение рабочего места; неправильная поза во время письма и чтения.

Все вышеуказанные причины и факторы, особенно сочетание нескольких из них, способствуют развитию у детей и взрослых миопии.

УЗИ глаз является дополнительной методикой в офтальмологии, которая обладает высокой точностью при выявлении кровоизлияний и оценке переднезадней оси глаза. Последний показатель необходим для выявления прогрессирования миопии у детей и взрослых. Существуют и другие области применения методики. Данный способ диагностики отличается простотой проведения процедуры, отсутствием дополнительной подготовки и быстротой обследования. УЗИ проводится с помощью универсальных и специализированных ультразвуковых аппаратов. Оценку результатов производят в соответствии с нормативными табличными данными.

Показания и противопоказания

Ультразвуковое исследование органов зрения представляет собой неинвазивный метод диагностики, применяемый для выявления многих офтальмологических заболеваний.

Показаниями для УЗИ глаз являются:

  • диагностика отслойки сетчатки, сосудистой оболочки, связанных с опухолевым процессом и другими патологиями,
  • подтверждение наличия новообразований, контроль их роста и эффективности лечения,
  • дифференциальная диагностика внутриглазных опухолей,
  • определение положения хрусталика при помутнении роговицы,
  • сканирование характера помутнений стекловидного тела,
  • выявление невидимых инородных тел в глазу (после травмы), уточнение их размера и локализации,
  • диагностика сосудистых офтальмопатологий,
  • обнаружение кист,
  • диагностика врожденных заболеваний,
  • выявление патологических изменений при глубоком поражении глазного яблока в глазнице (определение характера повреждения – перелом стенки орбиты, нарушение нервных связей, уменьшение самого яблока),
  • уточнение причины смещения глазного яблока вперед – аутоиммунные патологии, опухоли, воспаление, аномалии развития черепа, высокая односторонняя миопия,
  • определение изменений в ретробульбарном пространстве при повышенном внутричерепном давлении, ретробульбарном неврите и других заболеваниях.

Противопоказаниями для УЗИ-диагностики являются травмы глаза, при которых нарушается целостность структур и кровотечения в органах зрения.

Методики

Существует несколько методик ультразвукового исследования глаз:

  1. 1. УЗИ глаз в А-режиме, при котором получают одномерное отображение сигнала. Различают 2 его разновидности:
  • биометрическое, основной целью которого является определение длины ПЗО (эти данные используют перед операцией по поводу катаракты и для точного расчета искусственного хрусталика),
  • стандартизированное диагностическое – более чувствительный метод, который позволяет выявить и дифференцировать изменения во внутриглазных тканях.

2. УЗИ в B-режиме. Получаемое отображение эхо-сигнала – двухмерное, с горизонтальной и вертикальной осями. В результате лучше визуализируются форма, местоположение и размер патологических изменений. Ультразвуковой датчик контактирует непосредственно с поверхностью глаза (через водяную ванночку или гель). Является наиболее приемлемым способом изучения структур глаза, но малоинформативен для диагностики заболеваний роговицы. Преимущество сканирования в данном режиме – создание реальной двухмерной картины глазного яблока.

3. Ультразвуковая биомикроскопия, используется для визуализации переднего отрезка глаза. Частота ультразвуковых колебаний более высокая, чем у предыдущих способов.

В более редких случаях применяются следующие виды УЗ-обследования:

  1. 1. Иммерсионное УЗИ в B-режиме. Оно делается дополнительно к другим методам исследования для изучения патологий переднего края сетчатки, которые расположены слишком близко при стандартном сканировании в B-режиме. На глаз устанавливают небольшую ванночку, заполненную физиологическим раствором, используемым в качестве промежуточной среды.
  2. 2. Цветная допплерография. Позволяет одновременно получить двухмерное изображение и оценить кровоток в кровеносных сосудах. Так как сосуды имеют маленькие размеры, то точную их локализацию визуализировать не удается. Кровоток кодируется красным (артерии) и синим (вены) цветом. Метод позволяет также определить разрастание кровеносных сосудов в опухолях, оценить патологические отклонения сонной и центральной артерии, вен сетчатки, поражение зрительного нерва из-за недостаточного кровообращения.
  3. 3. Трехмерное ультразвуковое исследование. Трехмерное изображение получают в результате объединения программным путем множества двумерных сканов, а датчик установлен в одном положении, но быстро вращается. Полученный скан можно рассмотреть на различных срезах. Трехмерное УЗИ незаменимо в офтальмоонкологии (для определения объема меланом и оценки эффективности терапии).

На начальной степени катаракты помутнение хрусталика УЗИ выявить не позволяет. При достижении определенной зрелости заболевания исследование показывает различные варианты его эхопрозрачности.

В офтальмологии применяются как специализированные, так и универсальные ультразвуковые аппараты. В последнем случае разрешение датчиков должно быть не менее 5 МГц. Датчики универсальных ультразвуковых приборов имеют большие размеры, что делает невозможным их наложение непосредственно на глазницу из-за ее округлой формы. Поэтому в качестве промежуточной среды могут использоваться жидкостные прокладки, устанавливаемые на глаз. Малая рабочая поверхность специализированных офтальмологических датчиков позволяет визуализировать внутриглазничное пространство.

Достоинства и недостатки

К преимуществам метода ультразвукового исследования глаза относят:

  • Отсутствие тепловых эффектов.
  • Возможность получения информации о состоянии анатомических областей, расположенных рядом с глазницей.
  • Высокая чувствительность при исследовании внутриглазных кровоизлияний и отслоечных процессов, особенно при помутнении оптических сред глаза, когда традиционные офтальмологические средства диагностики не применимы.
  • Точное определение площади отслойки сетчатки.
  • Возможность оценки объема кровоизлияния, согласно которому определяют дальнейшую тактику лечения (2/8 объема стекловидного тела – консервативное лечение, 3/8 – хирургическое вмешательство).

Недостатками УЗИ органов зрения являются следующие:

  • контакт датчика с поверхностью глазного яблока,
  • погрешность измерения, возникающая из-за сжатия роговицы,
  • неточности, связанные с человеческим фактором (не строго перпендикулярное расположение датчика),
  • риск занесения инфекции в глаз.

Особенности обследования у детей

УЗИ глаза проводится в любом возрасте, но у маленьких детей трудно достичь неподвижности и закрытия век. Данная методика обследования помогает выявить врожденные отклонения в органах зрения (ретинопатия недоношенных, колобомы сосудистой оболочки и диска зрительного нерва, другие патологии). У детей младшего и школьного возраста основным показанием для назначения УЗИ является миопия.

У новорожденных детей преломляющая сила оптической системы глаз слабее, чем у взрослых, а размер глазного яблока меньше (16 мм против 24 мм). В норме после рождения имеется «запас» дальнозоркости в 2-5 диоптрий, который постепенно «расходуется» по мере роста детей и глазного яблока. К 10 годам его величина достигает соответствующего размера у взрослого человека, а фокус изображения попадает точно на сетчатку («стопроцентное» зрение).

После 7 лет нагрузка на зрительный аппарат детей сильно возрастает, что чаще всего связано с учебой в школе, отягощенной наследственностью и слабостью аккомодации – способностью хрусталика изменять свою форму для того, чтобы одинаково хорошо видеть вблизи и вдали. Ультразвуковая диагностика является основным методом для определения ПЗО (аксиального размера глаза) у детей при диагностике миопии со спазмом аккомодации. В связи с особенностями роста рекомендуется провести УЗИ ребенку 10 лет для выявления удлинения переднезадней оси глаза.

Если нарушения рефракции были выявлены в более раннем возрасте, то обследование проводится раньше. Отсутствие полноценной коррекции зрения до 10 лет приводит к ярко выраженным функциональным нарушениям зрения и косоглазию. Дополнительно определяют поперечный размер глазного яблока и акустическую плотность склеры.

Замер ПЗО является единственно достоверным методом определения прогрессирования близорукости. Главным критерием служит увеличение переднезадней оси глазного яблока более чем на 0,3 мм в год. При прогрессировании миопии растягиваются все структуры глаза, в том числе сетчатка, что может привести к тяжелым осложнениям – ее отслоению и потере зрения.

Проведение процедуры

Перед проведением процедуры не требуется специальной подготовки. При сканировании орбит глаза у женщин необходимо снять косметику с век и ресниц. Пациента укладывают на спину так, чтобы изголовье находилось возле врача. Под затылок подкладывают валик для того, чтобы голова приняла горизонтальное положение. В некоторых случаях, при необходимости определения смещения каких-либо структур глаза или при наличии пузырька газа в глазнице, пациента обследуют в сидячем положении.

Сканирование производится через нижнее или верхнее закрытое веко, предварительно наносят гель. Во время процедуры врач немного надавливает на датчик, но это безболезненно. Если применяется специализированный датчик, то глаза пациента могут быть открыты (при этом предварительно производится местная анестезия).

Диагностику структур глазного яблока делают в следующем порядке:

  • исследование передней части глазницы (веки, слезные железы и мешок) – обзорное сканирование,
  • для получения среза через переднезаднюю ось (ПЗО) ультразвуковой датчик устанавливают на закрытое верхнее веко над роговицей, в этот момент врачу становятся доступными центральная зона глазного дна, радужка, хрусталик, стекловидное тело (частично), зрительный нерв, жировая клетчатка,
  • для изучения всех сегментов глаза датчик устанавливают под углом в нескольких положениях, при этом пациента просят перевести взгляд вниз в сторону внутреннего и наружного угла глаза,
  • прикладывают ультразвуковую головку на внутреннюю и наружную часть нижнего века (глаза пациента открыты) с целью визуализации верхней части структур глазницы,
  • если необходимо произвести оценку подвижности выявленных образований, то обследуемого человека просят сделать быстрые движения глазными яблоками.

Сканирование сегментов глаза

Длительность процедуры составляет 10-15 минут.

Результаты исследования

Во время проведения обследования специалист ультразвуковой диагностики заполняет протокол с заключением. Расшифровку результатов УЗИ делает лечащий офтальмолог, сравнивая их с табличными нормативными показателями:

Нормальные показатели ультразвукового обследования глаза у взрослых

Нормальные значения ПЗО у детей приведены в таблице ниже. При различных глазных заболеваниях этот показатель варьируется.

Нормальные показатели у детей

В норме изображение глазного яблока характеризуется как округлое образование темного цвета (гипоэхогенное). В переднем отделе визуализируются две светлые полоски, отображающие капсулу хрусталика. Зрительный нерв выглядит как темная, гипоэхогенная полоса в задней части камеры глаза.

Нормальные показатели кровотока при цветной допплерографии

Ниже приведен пример протокола УЗИ глаза.

УЗИ глаза (или офтальмоэхография) – это безопасный, простой, безболезненный и высокоинформативный метод исследования структур глаза, позволяющий получать их изображение на мониторе компьютера в результате отражения ультразвуковых волн высокой частоты от тканей глаза. Если такое исследование дополняется применением цветного допплеровского картрирования сосудов глаза (или ЦДК), то специалист может оценивать и состояние кровотока в них.

В этой статье мы предоставим информацию о сути метода и его разновидностях, показаниях, противопоказаниях, методах подготовки и проведения УЗИ глаза. Эти данные помогут понять принцип такого способа диагностики, и вы сможете задать возникающие вопросы офтальмологу.

УЗИ глаза может назначаться как для выявления многих офтальмологических патологий (даже на начальных стадиях их развития), так и для оценки состояния структур глаза после выполнения хирургических операций (например, после замены хрусталика). Кроме этого, такая процедура дает возможность следить за динамикой развития хронических офтальмологических заболеваний.

Суть и разновидности метода

УЗИ глаза - простой и в то же время высокоинформативный метод диагностики заболеваний глаза.

Принцип проведения офтальмоэхографии основывается на способности испускаемых датчиком ультразвуковых волн отражаться от тканей органа и преобразовываться в изображение, отображаемое на мониторе компьютера. Благодаря этому врач может получать следующую информацию о глазном яблоке:

  • измерять величины глазного яблока в целом;
  • оценивать протяженность стекловидного тела;
  • измерять толщину внутренних оболочек и хрусталика;
  • оценивать протяженность и состояние ретробульбарных тканей;
  • определять величину или выявлять опухоли ресничного отдела;
  • изучать параметры сетчатки и сосудистой оболочки;
  • выявлять и оценивать характеристики (при невозможности определения этих изменений во время );
  • дифференцировать первичную отслойку сетчатки от вторичной, которая была вызвана увеличением опухолей сосудистой оболочки;
  • обнаруживать в глазном яблоке инородные тела;
  • определять присутствие в стекловидном теле помутнений, экссудата или сгустков крови;
  • выявлять .

Такое исследование может выполняться даже при помутнениях оптических сред глаза, которые способны затруднять диагностику при помощи других методов офтальмологического обследования.

Обычно офтальмоэхография дополняется выполнением допплерографии, позволяющей оценивать состояние и проходимость сосудов глазного яблока, скорость и направление кровотока в них. Эта часть исследования дает возможность выявлять отклонения в кровообращении даже на начальных этапах.

Для проведения УЗИ глаза могут применяться следующие разновидности этой методики:

  1. Одномерная эхография (или режим А) . Этот способ исследования используется для определения размеров глаза или его отдельных структур и оценки состояния орбит. При проведении этой методики в глаз больного закапывается раствор и датчик аппарата устанавливают непосредственно на глазное яблоко. В результате обследования получается график, отображающий необходимые для диагностики параметры глаза.
  2. Двухмерная эхография (или режим В) . Такой метод позволяет получать двухмерную картину и характеристики строения внутренних структур глазного яблока. Для его выполнения не требуется специальная подготовка глаза, а датчик УЗ-аппарата устанавливается на закрытое веко обследуемого. Само исследование занимает не более 15 минут.
  3. Комбинация режимов А и В . Такое сочетание вышеописанных методик дает возможность получать более детальную картину состояния глазного яблока и повышает информативность диагностики.
  4. Ультразвуковая биомикроскопия . Такой метод подразумевает цифровую обработку получаемых аппаратом эхосигналов. В результате качество изображения, выводящегося на монитор, повышается в несколько раз.

Допплеровское исследование сосудов глаза выполняется по следующим методикам:

  1. Трехмерная эхография . Такой способ исследования дает возможность получать трехмерное изображение структур глаза и его сосудов. Некоторые современные аппараты позволяют получать картину в режиме реального времени.
  2. Энергетическая допплерография . Благодаря этой методике специалист может изучать состояние сосудов и оценивать амплитудные и скоростные величины кровотока в них.
  3. Импульсно-волновая допплерография . Этот способ исследования проводит анализ шумов, возникающих при кровотоке. В результате врач может более точно оценивать его скорость и направление.

При проведении ультразвукового дуплексного сканирования объединяются все возможности как обычного УЗИ, так и допплеровского исследования. Такой метод обследования одномоментно предоставляет данные не только о размерах и структуре глаза, но и о состоянии его сосудов.

Показания


УЗИ глаза - один из методов диагностики, рекомендованных больным с миопией или дальнозоркостью.

УЗИ глаза может назначаться в следующих случаях:

  • высокие степени или дальнозоркости;
  • глаукома;
  • отслойка сетчатки;
  • патологии глазных мышц;
  • подозрение на инородное тело;
  • заболевания зрительного нерва;
  • травмы;
  • сосудистые патологии глаз;
  • врожденные аномалии строения органов зрения;
  • способные приводить к появлению офтальмологических патологий хронические заболевания: , сопровождающиеся гипертензией заболевания почек;
  • контроль эффективности лечения онкологических патологий глаз;
  • контроль эффективности терапии при сосудистых изменениях глазного яблока;
  • оценка эффективности проведенных офтальмологических операций.

Допплеровское УЗИ глаза показано при следующих патологиях:

  • спазмирование или непроходимость артерии сетчатки;
  • тромбоз глазных вен;
  • сужения сонной артерии, приводящие к нарушению кровотока в глазных артериях.

Противопоказания

УЗИ глаза является абсолютно безопасной процедурой и не имеет противопоказаний.

Подготовка пациента

Проведение офтальмоэхографии не требует особой подготовки больного. При его назначении врач обязательно объясняет пациенту суть и необходимость выполнения этого диагностического исследования. Особенное внимание уделяется психологической подготовке маленьких детей – ребенок должен знать, что эта процедура не причинит ему боли, и правильно вести себя во время УЗ-сканирования.

При необходимости использования во время исследования режима А перед обследованием врач обязательно уточняет у пациента данные о наличии у него аллергической реакции на местные анестетики и выбирает безопасный для больного препарат.

УЗИ глаза может выполняться как в условиях поликлиники, так и в стационаре. Пациент должен взять с собой направление на исследование и результаты ранее выполненных офтальмоэхографий. Женщинам перед процедурой не следует пользоваться декоративной косметикой для глаз, так как во время обследования на верхнее веко будет наноситься гель.

Как проводится исследование

Офтальмоэхография выполняется в специально оборудованном кабинете следующим образом:

  1. Пациент усаживается на кресло перед врачом.
  2. Если для обследования применяется режим А, то в глаз больного закапывается раствор местного анестетика. После начала его действия врач аккуратно устанавливает датчик аппарата непосредственно на поверхность глазного яблока и перемещает необходимым образом.
  3. Если исследование выполняется в режиме В или проводится допплерография, то обезболивающие капли не применяются. Пациент закрывает глаза и на его верхние веки наносится гель. Врач устанавливает датчик на веко больного и выполняет исследование на протяжении 10-15 минут. После этого гель с век удаляется салфеткой.

После процедуры специалист УЗ-диагностики составляет заключение и выдает его на руки пациенту или отправляет лечащему врачу.


Показатели нормы

Расшифровку результатов офтальмоэхографии проводит специалист УЗ-диагностики и лечащий врач больного. Для этого проводится сравнение полученных результатов с показателями нормы:

  • стекловидное тело – прозрачное и не имеет включений;
  • объем стекловидного тела – около 4 мл;
  • передне-задняя ось стекловидного тела – около 16,5 мм;
  • хрусталик – прозрачен, невидим, его задняя капсула хорошо просматривается;
  • длина оси глаза – 22,4-27,3 мм;
  • толщина внутренних оболочек – 0,7-1 мм;
  • ширина гипоэхогенной структуры зрительного нерва – 2-2,5 мм;
  • преломляющая сила глаза при эмметропии – 52,6-64,21 D.

К какому врачу обратиться

УЗИ глаза может назначаться офтальмологом. При некоторых хронических заболеваниях, вызывающих изменения в состоянии глазного яблока и глазного дна, такая процедура может рекомендоваться врачами других специализаций: терапевтом, невропатологом, нефрологом или кардиологом.

УЗИ глаза является высокоинформативной, неинвазивной, безопасной, безболезненной и простой в выполнении диагностической процедурой, помогающей ставить верный диагноз при многих офтальмологических патологиях. При необходимости это исследование может повторяться многократно и не требует соблюдения каких-либо перерывов. Для проведения УЗИ глаза пациенту не нужно проводить специальную подготовку и для назначения такого обследования не существует никаких противопоказаний и возрастных ограничений.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Помадка на пасхальный кулич из сахарной пудры, белковая, с желатином — Рецепт помадки для Помадка на пасхальный кулич из сахарной пудры, белковая, с желатином — Рецепт помадки для Вкусная выпечка в домашних условиях быстро, просто Вкусная выпечка в домашних условиях быстро, просто Как приготовить маринованные белые грибы Классический рецепт маринованных белых грибов Как приготовить маринованные белые грибы Классический рецепт маринованных белых грибов