Метеоры и метеориты. Метеоры и метеориты Полёт метеоров в земной атмосфере

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

>>

3. ПОЛЁТ МЕТЕОРОВ В ЗЕМНОЙ АТМОСФЕРЕ

Метеоры появляются на высотах 130 км и ниже и обычно исчезают около высоты 75 км. Эти границы изменяются в зависимости от массы и скорости метеорных тел, проникающих в атмосферу. Визуальные определения высот метеоров из двух и более пунктов (так называемые корреспондирующие) относятся преимущественно к метеорам 0-3-й звёздной величины. С учётом влияния довольно значительных ошибок визуальные наблюдения дают следующие значения высот метеоров: высота появления H 1 = 130-100 км, высота исчезновения H 2 = 90 - 75 км, высота середины пути H 0 = 110 - 90 км (рис. 8).

Рис. 8. Высоты (H ) метеорных явлений. Пределы высот (слева): начало и конец пути болидов (Б ), метеоров по визуальным наблюдениям (М ) и по радиолокационным наблюдениям (РМ ), телескопических метеоров по визуальным наблюдениям (Т ); (М Т ) - область задержки метеоритов. Кривые распределения (справа): 1 - середина пути метеоров по радиолокационным наблюдениям, 2 - то же по фотографическим данным, и - начало и конец пути по фотографическим данным.

Гораздо более точные фотографические определения высот относятся, как правило, к более ярким метеорам, от -5-й до 2-й звёздной величины, или к наиболее ярким участкам их траекторий. По фотографическим наблюдениям в СССР высоты ярких метеоров заключаются в следующих пределах: H 1 = 110-68 км, H 2 = 100-55 км, Н 0 = 105-60 км. Радиолокационные наблюдения позволяют определить раздельно H 1 и H 2 только для наиболее ярких метеоров. По радиолокационным данным для этих объектов H 1 = 115-100 км, H 2 = 85-75 км. Надо заметить, что радиолокационное определение высоты метеоров относится только к той части метеорной траектории, вдоль которой образуется достаточно интенсивный ионизационный след. Поэтому для одного и того же метеора высота по фотографическим данным может заметно отличаться от высоты по радиолокационным данным.

Для более слабых метеоров при помощи радиолокатора удаётся определить статистически только среднюю их высоту. Распределение средних высот метеоров преимущественно 1-6-й звёздной величины, полученных радиолокационным методом, показано ниже:

Рассматривая фактический материал по определению высот метеоров, можно установить, что по всем данным огромное большинство этих объектов наблюдается в зоне высоты 110-80 км. В этой же зоне наблюдаются телескопические метеоры, которые по А.М. Бахареву имеют высоты H 1 = 100 км, H 2 = 70 км. Однако по телескопическим наблюдениям И.С. Астаповича и его сотрудников в Ашхабаде значительное количество телескопических метеоров наблюдается также ниже 75 км, преимущественно на высотах 60-40 км. Это, по-видимому, медленные и поэтому слабые метеоры, которые начинают светиться, лишь глубоко врезавшись в земную атмосферу.

Переходя к очень крупным объектам, мы находим, что болиды появляются на высотах H 1 = 135-90 км, имея высоту конечной точки пути H 2 = 80-20 км. Болиды, проникающие в атмосферу ниже 55 км, сопровождаются звуковыми эффектами, а достигающие высоты 25-20 км обычно предшествуют выпадению метеоритов.

Высоты метеоров зависят не только от их массы, но и от скорости их относительно Земли, или так называемой геоцентрической скорости. Чем больше скорость метеора, тем выше он начинает светиться, так как быстрый метеор даже в разреженной атмосфере гораздо чаще сталкивается с частицами воздуха, чем медленный. Средняя высота метеоров зависит от их геоцентрической скорости следующим образом (рис. 9):

Геоцентрическая скорость (V g ) 20 30 40 50 60 70 км/сек
Средняя высота (H 0 ) 68 77 82 85 87 90 км

При одной и той же геоцентрической скорости метеоров их высоты зависят от массы метеорного тела. Чем больше масса метеора, тем ниже он проникает.

Видимая часть траектории метеора, т.е. длина его пути в атмосфере, определяется значениями высот его появления и исчезновения, а также наклоном траектории к горизонту. Чем круче наклон траектории к горизонту, тем короче видимая длина пути. Длина пути обычных метеоров не превышает, как правило, нескольких десятков километров, но для очень ярких метеоров и болидов она достигает сотен, а иногда и тысяч километров.

Рис. 10. Зенитное притяжение метеоров.

Метеоры светятся на коротком видимом отрезке своей траектории в земной атмосфере протяжением в несколько десятков километров, который они пролетают за несколько десятых долей секунды (реже за несколько секунд). На этом отрезке траектории метеора уже проявляется действие притяжения Земли и торможения в атмосфере. При подходе к Земле первоначальная скорость метеора под действием земного притяжения увеличивается, и путь искривляется так, что наблюдаемый радиант его смещается к зениту (зенит - точка над головой наблюдателя). Поэтому действие притяжения Земли на метеорные тела называется зенитным притяжением (рис. 10).

Чем медленнее метеор, тем больше влияние зенитного притяжения, как это можно видеть из следующей таблички, где V g обозначает начальную геоцентрическую скорость, V" g - ту же скорость, искажённую притяжением Земли, а Δz - максимальная величина зенитного притяжения:

V g 10 20 30 40 50 60 70 км/сек
V" g 15,0 22,9 32,0 41,5 51,2 61,0 70,9 км/сек
Δz 23 o 8 o 4 o 2 o 1 o <1 o

Проникая в атмосферу Земли, метеорное тело испытывает, кроме того, торможение, сначала почти незаметное, но весьма значительное в конце пути. По советским и чехословацким фотографическим наблюдениям торможение может достигать на конечном отрезке траектории 30-100 км/сек 2 , в то же время вдоль большей части траектории торможение колеблется от 0 до 10 км/сек 2 . Медленные метеоры испытывают наибольшую относительную потерю скорости в атмосфере.

Кажущаяся геоцентрическая скорость метеоров, искажённая зенитным притяжением и торможением, соответствующим образом исправляется с учётом влияния этих факторов. Долгое время скорости метеоров были известны недостаточно точно, поскольку они определялись из малоточных визуальных наблюдений.

Фотографический способ определения скорости метеоров с применением обтюратора является наиболее точным. Все без исключения определения скорости метеоров, полученные фотографическим путём в СССР, Чехословакии и США, показывают, что метеорные тела должны двигаться вокруг Солнца по замкнутым эллиптическим путям (орбитам). Таким образом, оказывается, что подавляющая часть метеорной материи, если не вся она, принадлежит Солнечной системе. Этот результат прекрасно согласуется с данными радиолокационных определений, хотя фотографические результаты относятся в среднем к более ярким метеорам, т.е. к более крупным метеорным телам. Кривая распределения скоростей метеоров, найденная при помощи радиолокационных наблюдений (рис. 11), показывает, что геоцентрическая скорость метеоров заключается в основном в пределах от 15 до 70 км/сек (некоторое количество определений скорости, превосходящих 70 км/сек, обусловлено неизбежными ошибками наблюдений). Это ещё раз подтверждает вывод о том, что метеорные тела движутся вокруг Солнца по эллипсам.

Дело в том, что скорость движения Земли по орбите составляет 30 км/сек. Стало быть, встречные метеоры, имеющие геоцентрическую скорость 70 км/сек, движутся относительно Солнца со скоростью 40 км/сек. Но на расстоянии Земли параболическая скорость (т.е. скорость, необходимая, чтобы тело унеслось по параболе за пределы Солнечной системы) составляет 42 км/сек. Значит, все скорости метеоров не превышают параболической и, следовательно, их орбиты представляют собой замкнутые эллипсы.

Кинетическая энергия метеорных тел, вторгающихся в атмосферу с весьма большой начальной скоростью, очень велика. Взаимные столкновения молекул и атомов метеора и воздуха интенсивно ионизируют газы в большом объёме пространства вокруг летящего метеорного тела. Частицы, в изобилии вырванные из метеорного тела, образуют вокруг него ярко светящуюся оболочку из раскалённых паров. Свечение этих паров напоминает свечение электрической дуги. Атмосфера на высотах, где появляются метеоры, очень разрежена, поэтому процесс воссоединения оторванных от атомов электронов продолжается довольно долго, вызывая при этом свечение столба ионизованного газа, которое продолжается в течение нескольких секунд, а иногда и минут. Такова природа самосветящихся ионизационных следов, которые можно наблюдать на небе после многих метеоров. Спектр свечения следа также состоит из линий тех же элементов, что и спектр самого метеора, однако уже нейтральных, а не ионизованных. Кроме того, в следах также светятся атмосферные газы. На это указывают открытые в 1952-1953 гг. в спектрах метеорного следа линии кислорода и азота.

По спектрам метеоров видно, что метеорные частицы состоят либо из железа, имея плотность свыше 8 г/см 3 , либо являются каменными, что должно соответствовать плотности от 2 до 4 г/см 3 . Яркость и спектр метеоров позволяют оценить их размеры и массу. Видимый радиус светящейся оболочки метеоров 1-3-й звёздной величины оценивается примерно в 1-10 см. Однако радиус светящейся оболочки, определяемый разлётом светящихся частиц, намного превосходит радиус самого метеорного тела. Метеорные тела, влетающие в атмосферу со скоростью 40-50 км/сек и создающие явление метеоров нулевой звёздной величины, имеют радиус порядка 3 мм, а массу порядка 1 г. Яркость метеоров пропорциональна их массе, так что масса метеора некоторой звёздной величины в 2,5 раза меньше, чем для метеоров предыдущей величины. Кроме того, яркость метеоров пропорциональна кубу их скорости относительно Земли.

Вступая в атмосферу Земли с большой начальной скоростью, метеорные частицы встречаются на высотах 80 и больше км с весьма разреженной газовой средой. Плотность воздуха здесь в сотни миллионов раз меньше, чем у поверхности Земли. Поэтому в этой зоне взаимодействие метеорного тела с атмосферной средой выражается в бомбардировке тела отдельными молекулами и атомами. Это - молекулы и атомы кислорода и азота, поскольку химический состав атмосферы в метеорной зоне приблизительно такой же, как и на уровне моря. Атомы и молекулы атмосферных газов при упругих столкновениях либо отскакивают, либо проникают в кристаллическую решётку метеорного тела. Последнее быстро нагревается, расплавляется и испаряется. Скорость испарения частиц сначала незначительна, затем нарастает до максимума и вновь уменьшается к концу видимого пути метеора. Испаряющиеся атомы вылетают из метеора со скоростями в несколько километров в секунду и, обладая большой энергией, испытывают частые соударения с атомами воздуха, приводящие к нагреванию и ионизации. Раскалённое облачко испарившихся атомов образует светящуюся оболочку метеора. Часть атомов полностью теряет при столкновениях внешние электроны, в результате чего вокруг траектории метеора образуется столб ионизованного газа с большим числом свободных электронов и положительных ионов. Количество электронов в ионизованном следе составляет 10 10 -10 12 на 1 см пути. Начальная кинетическая энергия расходуется на нагревание, свечение и ионизацию примерно в отношении 10 6:10 4:1.

Чем глубже проникает метеор в атмосферу, тем плотнее становится его раскалённая оболочка. Уподобляясь очень быстро летящему снаряду, метеор образует головную ударную волну; эта волна сопровождает метеор при его движении в более низких слоях атмосферы, а в слоях ниже 55 км вызывает звуковые явления.

Следы, остающиеся после полёта метеоров, могут наблюдаться как при помощи радиолокаторов, так и визуально. Особенно успешно можно наблюдать ионизационные следы метеоров в светосильные бинокли или телескопы (так называемые кометоискатели).

Следы болидов, проникающих в более низкие и плотные слои атмосферы, напротив, в основном состоят из пылевых частиц и поэтому видны, как тёмные дымные облачка на фоне голубого неба. Если такой пылевой след освещается лучами зашедшего Солнца или Луны, он бывает виден, как серебристые полосы на фоне ночного неба (рис. 12). Такие следы могут наблюдаться часами, пока они не будут уничтожены воздушными течениями. Следы же менее ярких метеоров, образующиеся на высотах 75 км и более, содержат лишь очень малую долю пылевых частиц и видны исключительно вследствие самосвечения атомов ионизованного газа. Продолжительность видимости ионизационного следа невооружённым глазом составляет для болидов -6-й звёздной величины в среднем 120 сек., а для метеора 2-й звёздной величины 0,1 сек., в то время как длительность радиоэха для тех же объектов (при геоцентрической скорости 60 км/сек) равна 1000 и 0,5 сек. соответственно. Угасание ионизационных следов частично идёт за счёт присоединения свободных электронов к молекулам кислорода (О 2), содержащегося в верхних слоях атмосферы.

Ясной темной ночью, особенно в середине августа, ноября и декабря, можно увидеть, как прочерчивают небо «падающие звезды» — это метеоры, интересное природное явление, известное человеку с незапамятных времен.

Метеоры, особенно в последние годы, привлекают пристальное внимание астрономической науки. Они уже много рассказали и о нашей Солнечной системе и о самой Земле, в частности о земной атмосфере.

Более того, метеоры, образно говоря, вернули долг, возместили средства, затраченные на их изучение, сделав вклад в решение некоторых практических задач науки и техники.

Исследование метеоров активно развивается в ряде стран, некоторым из этих исследований посвящен наш короткий рассказ. Начнем мы его с уточнения терминов.

Объект, движущийся в межпланетном пространстве и имеющий размеры, как говорится, «больше молекулярных, но меньше астероидальных», называют метеороидом, или метеорным телом. Вторгаясь в земную атмосферу, метеороид (метеорное тело) накаляется, ярко светится и прекращает свое существование, превратившись в пыль и пары.

Световое явление, вызванное сгоранием метеорного тела, называют метеором. Если метеороид имеет сравнительно большую массу и если его скорость относительно невелика, то иногда часть метеорного тела, не успев полностью испариться в атмосфере, падает на поверхность Земли.

Эту выпавшую часть называют метеоритом. Чрезвычайно яркие метеоры, имеющие вид огненного шара с хвостом или горящей головешки, называют болидами. Яркие болиды иногда видны даже днем.

Для чего изучают метеоры

Метеоры наблюдают и изучают в течение столетий, но только в последние три-четыре десятилетия стали четко выясняться природа, физические свойства, характеристики орбит и происхождение тех космических тел, которые являются источниками метеоритов. Интерес исследователей к метеорным явлениям связан с несколькими группами научных проблем.

Прежде всего, изучение траектории метеоров, процессов свечения и ионизации вещества метеороидов, важно для выяснения их физической природы, а они, метеорные тела, как-никак есть прибывшие к Земле «пробные порции» вещества из далеких районов Солнечной системы.

Далее — исследование ряда физических явлений, сопровождающих полет метеорного тела, дает богатый материал для изучения физических и динамических процессов, происходящих в так называемой метеорной зоне нашей атмосферы, то есть на высотах 60-120 км. Здесь в основном и наблюдаются метеоры.

Причем для этих слоев атмосферы метеоры, пожалуй, остаются наиболее эффективным «исследовательским инструментом», даже на фоне нынешнего размаха исследований с помощью космических аппаратов.

Прямыми методами изучения верхних слоев земной атмосферы при помощи искусственных спутников Земли и высотных ракет начали широко пользоваться много лет назад, со времени Международного Геофизического года.

Однако искусственные спутники дают сведения об атмосфере на высотах более 130 км, на меньших высотах спутники просто сгорают в плотных слоях атмосферы. Что же касается ракетных измерений, то они проводятся только над фиксированными пунктами земного шара и носят кратковременный характер.

Метеорные тела — полноправные жители Солнечной системы, они обращаются по геоцентрическим орбитам, имеющим обычно форму эллипса.

Оценивая, как общее число метеороидов распределяется по группам с разными массами, скоростями, направлениями, можно не только изучать весь комплекс малых тел Солнечной системы, но еще и создать основу для построения теории происхождения и эволюции метеорного вещества.

В последнее время интерес к метеорам возрос еще и в связи с интенсивным изучением околоземного космического пространства. Важной практической задачей стала оценка так называемой метеорной опасности на различных космических трассах.

Это, конечно, лишь частный вопрос, у космических и метеорных исследований очень много точек соприкосновения, и изучение метеорных частиц прочно вошло в космические программы. Так, например, с помощью спутников, космических зондов и геофизических ракет получены ценные сведения о движущихся в межпланетном пространстве мельчайших метеороидах.

Вот одна лишь цифра: устанавливаемые на космических аппаратах датчики позволяют регистрировать удары метеороидов, размеры которых измеряются тысячными долями миллиметра (!).

Как наблюдают метеоры

В ясную безлунную ночь можно заметить метеоры до 5-й и даже 6-й звездной величины — они имеют такую же яркость, как самые слабые звезды, различимые невооруженным глазом. Но в основном невооруженным глазом видны несколько более яркие метеоры, ярче 4-й звездной величины; в течение часа в среднем можно заметить около 10 таких метеоров.

А всего в атмосфере Земли за сутки бывает около 90 миллионов метеоров, которые можно было бы увидеть в ночное время. Общее число метеороидов различных размеров, вторгающихся за сутки в земную атмосферу, исчисляется сотнями миллиардов.

В метеорной астрономии условились де лить метеоры на два типа. Метеоры, которые наблюдаются каждую ночь и движутся в самых разных направлениях, называют случайными, или спорадическими. Другой тип — периодические, или поточные, метеоры, они появляются в одно и то же время года и из определенного небольшого участка звездного неба — радианта. Слово это — радиант — в данном случае означает «излучающий участок».

Метеорные тела, порождающие спорадические метеоры, движутся в пространстве независимо друг от друга по самым разнообразным орбитам, а периодические — по почти параллельным путям, которые как раз и исходят из радианта.

Метеорным потокам дают названия по созвездиям, в которых расположены их радианты. Например, Леониды — метеорный поток с радиантом в созвездии Льва, Персеиды — в созвездии Персея, Ориониды — в созвездии Ориона и так далее.

Зная точное положение радианта, момент и скорость полета метеора, можно вычислить элементы орбиты метеороида, то есть выяснить характер его движения в межпланетном пространстве.

Визуальные наблюдения позволили получить важную информацию о суточных и сезонных изменениях общего количества метеоров, о распределении радиантов по небесной сфере. Но главным образом для изучения метеоров используются фотографические, радиолокационные, а в последние годы и электронно-оптические и телевизионные методы наблюдений.

Систематическая фоторегистрация метеоров началась лет сорок назад, используются для этой цели, так называемые, метеорные патрули. Метеорный патруль — это система из нескольких фотографических агрегатов, а каждый агрегат состоит обычно из 4-6 широкоугольных фотографических камер, устанавливаемых так, чтобы все они вместе охватывали максимально возможную область неба.

Наблюдая метеор из двух пунктов, удаленных друг от друга на 30-50 км, по фотоснимкам на фоне звезд легко определить его высоту, траекторию в атмосфере и радиант.

Если перед камерами одного из агрегатов патруля разместить обтюратор, то есть вращающийся затвор, то можно определить и скорость метеороида — вместо непрерывного следа на фотопленке получится пунктирная линия, причем длина штрихов как раз и будет пропорциональна скорости метеорного тела.

Если перед объективами фотокамер другого агрегата расположить призмы или дифракционные решетки, то на пластинке появится спектр метеора, подобно тому, как на белой стене появляется спектр солнечного зайчика, прошедшего через призму. А по спектрам метеора можно определить химический состав метеороида.

Одно из важных достоинств радиолокационных методов — это возможность наблюдать метеоры в любую погоду и круглые сутки. Кроме того, радиолокация позволяет регистрировать очень слабые метеоры до 12-15-звездной величины, порождаемые метеороидами с массой в миллионные доли грамма и даже меньше.

Радиолокатор «засекает» не само метеорное тело, а его след: при движении в атмосфере испарившиеся атомы метеорного тела сталкиваются с молекулами воздуха, возбуждаются и превращаются в ионы, то есть подвижные заряженные частицы.

Образуются ионизованные метеорные следы, имеющие длину несколько десятков километров и начальные радиусы порядка метра; это своего рода висящие (конечно, недолго!) атмосферные проводники, или точнее полупроводники — в них можно насчитать от 10б до 1016 свободных электронов или ионов на каждый сантиметр длины следа.

Такой концентрации свободных зарядов вполне достаточно, чтобы от них, как от проводящего тела, отражались радиоволны метрового диапазона. Вследствие диффузии и других явлений ионизированный след быстро расширяется, его электронная концентрация падает и под действием ветров в верхней атмосфере след рассеивается.

Это позволяет использовать радиолокацию для изучения скорости и направления воздушных течений, например, для исследования глобальной циркуляции верхней атмосферы.

В последние годы все активней ведутся наблюдения очень ярких болидов, которые иногда сопровождаются выпадением метеоритов. В нескольких странах организованы болидные сети наблюдений с камерами «всего неба».

Они действительно контролируют весь небосвод, но регистрируют только очень яркие метеоры. В такие сети входят 15-20 пунктов, расположенных на расстоянии 150-200 километров, они охватывают большие территории, так как вторжение в земную атмосферу крупного метеороида — явление сравнительно редкое.

И вот что интересно: из сфотографированных нескольких сот ярких болидов только три сопровождались падением метеорита, хотя скорости крупных метеороидов были не очень большими. Это означает, что надземный взрыв Тунгусского метеорита 1908 года — явление типичное.

Структура и химический состав метеорных тел

Вторжение метеорного тела в земную атмосферу сопровождается сложными процессами его разрушения — плавлением, испарением, распылением и дроблением. Атомы метеорного вещества при столкновении с молекулами воздуха ионизируются и возбуждаются: свечение метеора в основном связано с излучением возбужденных атомов и ионов, они двигаются со скоростями самого метеорного тела и имеют кинетическую энергию от нескольких десятков до сотен электрон-вольт.

Фотографические наблюдения метеоров по методу мгновенной экспозиции (порядка 0,0005 сек.), впервые в мире разработанному и реализованному в Душанбе и Одессе, наглядно показали разнообразные виды дробления метеорных тел в земной атмосфере.

Такое дробление может объясняться как сложным характером самих процессов разрушения метеорных тел в атмосфере, так и рыхлой структурой метеороидов и их низкой плотностью. Особенно низка плотность метеорных тел кометного происхождения.

В спектрах метеоров главным образом видны яркие эмиссионные линии. Среди них обнаружены линии нейтральных атомов железа, натрия, марганца, кальция, хрома, азота, кислорода, алюминия и кремния, а также линии ионизированных атомов магния, кремния, кальция и железа. Подобно метеоритам, метеорные тела можно разделить на две большие группы — железные и каменные, причем каменных метеороидов значительно больше, чем железных.

Метеорное вещество в межпланетном пространстве

Анализ орбит спорадических метеороидов показывает, что метеорное вещество концентрируется в основном в плоскости эклиптики (плоскость, в которой лежат орбиты планет) и движется вокруг Солнца в ту же сторону, что и сами планеты. Это важный вывод, он доказывает общность происхождения всех тел Солнечной системы, включая и такие мелкие, как метеороиды.

Наблюдаемая скорость метеороидов относительно Земли лежит в пределах 11-72 км/сек. Но скорость движения Земли по ее орбите равна 30 км/сек., а значит, скорость метеороидов относительно Солнца не превышает 42 км/сек. То есть она меньше параболической скорости, которая необходима для выхода из Солнечной системы.

Отсюда вывод — метеороиды не приходят к нам из межзвездного пространства, они принадлежат Солнечной системе и двигаются вокруг Солнца по замкнутым эллиптическим орбитам. На основе фотографических и радиолокационных наблюдений уже определены орбиты нескольких десятков тысяч метеороидов.

Наряду с гравитационным притяжением Солнца и планет на движение метеороидов, в особенности мелких, существенное влияние оказывают силы, вызванные воздействием электромагнитного и корпускулярного излучения Солнца.

Так, в частности, под действием светового давления мельчайшие метеорные частицы размерами менее 0,001 мм выталкиваются из пределов Солнечной системы. На движение маленьких частиц, кроме того, значительное влияние оказывает и тормозящее действие лучевого давления (эффект Пойнтинга — Робертсона), и из-за этого орбиты частиц постепенно «сжимаются», они все более приближаются к Солнцу.

Время жизни метеороидов во внутренних областях Солнечной системы невелико, и, следовательно, запасы метеорного вещества должны каким-то образом постоянно пополняться.

Можно указать три главных источника такого пополнения:

1) распад кометных ядер;

2) дробление астероидов (напомним — это малые планеты, двигающиеся в основном между орбитами Марса и Юпитера) в результате их взаимных столкновений;

3) приток очень мелких метеороидов с далеких окрестностей Солнечной системы, где, вероятно, находятся остатки вещества, из которого образовалась Солнечная система.

). Аналогичное явление большей интенсивности (ярче звёздной величины −4) называется болидом . Бывают встречные и догоняющие. Эти междисциплинарные явления изучаются метеоритикой (разделом астрономии), а также физикой атмосферы . Исторически в науке общий термин метеор (небесный ) означал любые явления, наблюдаемые в атмосфере (не только сгорание метеорного тела в атмосфере). В частности, к ним относятся: гидрометеоры - дождь, роса, туман и тому подобные, оптические метеоры - мираж, заря, гало и тому подобные, электрометеоры - молния, огни Святого Эльма и тому подобные. Изучением большинства метеоров сегодня занимаются «наука о метеорах» (метеорология), а также физика атмосферы.

Описание

Отличительными характеристиками метеора, помимо массы и размера, являются его скорость, высота воспламенения, длина трека (видимый путь), яркость свечения и химический состав (влияет на цвет горения). Так, при условии, что метеор достигает 1 звёздной величины при скорости вхождения в атмосферу Земли 40 км/с, загорается на высоте 100 км, а потухает на высоте 80 км, при длине пути в 60 км и расстоянии до наблюдателя в 150 км, то продолжительность полёта составит 1,5 сек, а средний размер составит 0,6 мм при массе 6 мг.

Часто метеоры группируются в метеорные потоки - постоянные массы метеоров, появляющиеся в определённое время года , в определённой стороне неба . Широко известны такие метеорные потоки как Леониды , Квадрантиды и Персеиды . Все метеорные потоки порождаются кометами в результате разрушения в процессе таяния при прохождении внутренней части Солнечной системы.

Во время визуальных наблюдений метеорных потоков кажется, что метеоры вылетают из одной точки на небе - радианта метеорного потока. Это объясняется сходным происхождением и относительно близким расположением космической пыли в космическом пространстве, являющейся источником метеорных потоков.

След метеора обычно исчезает за считанные секунды, но иногда может оставаться на минуты и передвигаться под действием ветра на высоте возникновения метеора. Визуальными и фотографическими наблюдениями метеора из одной точки земной поверхности определяют, в частности, экваториальные координаты начальной и конечной точек следа метеора, положение радианта по наблюдениям нескольких метеоров. Наблюдениями одного и того же метеора из двух точек - так называемыми корреспондирующими наблюдениями - определяют высоту полёта метеора, расстояние до него, а для метеоров с устойчивым следом - скорость и направление перемещения следа, и даже строят трёхмерную модель его перемещения .

Помимо визуальных и фотографических методов изучения метеоров в последние полвека развились электронно-оптический, спектрометрический и особенно радиолокационный , основанный на свойстве метеорного следа рассеивать радиоволны. Радиометеорное зондирование и изучение перемещения метеорных следов позволяет получить важные сведения о состоянии и динамике атмосферы на высотах около 100 км. Возможно создание метеорных каналов радиосвязи. Основные установки исследования метеоров: фотографические метеорные патрули , метеорные радиолокационные станции. Из крупных международных программ в области исследования метеоров заслуживает внимания осуществлявшаяся в 1980-х годах программа ГЛОБМЕТ .

См. также

Напишите отзыв о статье "Метеор"

Примечания

4. Актуальные проблемы радиолокационных исследований метеоров. Сидоров Владимир Васильевич

Литература

Ссылки

  • , Популярные лекции по астрономии, В. В. Федынский, 1956 год

Отрывок, характеризующий Метеор

– А как же, – быстро отвечал Платон, – лошадиный праздник. И скота жалеть надо, – сказал Каратаев. – Вишь, шельма, свернулась. Угрелась, сукина дочь, – сказал он, ощупав собаку у своих ног, и, повернувшись опять, тотчас же заснул.
Наружи слышались где то вдалеке плач и крики, и сквозь щели балагана виднелся огонь; но в балагане было тихо и темно. Пьер долго не спал и с открытыми глазами лежал в темноте на своем месте, прислушиваясь к мерному храпенью Платона, лежавшего подле него, и чувствовал, что прежде разрушенный мир теперь с новой красотой, на каких то новых и незыблемых основах, воздвигался в его душе.

В балагане, в который поступил Пьер и в котором он пробыл четыре недели, было двадцать три человека пленных солдат, три офицера и два чиновника.
Все они потом как в тумане представлялись Пьеру, но Платон Каратаев остался навсегда в душе Пьера самым сильным и дорогим воспоминанием и олицетворением всего русского, доброго и круглого. Когда на другой день, на рассвете, Пьер увидал своего соседа, первое впечатление чего то круглого подтвердилось вполне: вся фигура Платона в его подпоясанной веревкою французской шинели, в фуражке и лаптях, была круглая, голова была совершенно круглая, спина, грудь, плечи, даже руки, которые он носил, как бы всегда собираясь обнять что то, были круглые; приятная улыбка и большие карие нежные глаза были круглые.
Платону Каратаеву должно было быть за пятьдесят лет, судя по его рассказам о походах, в которых он участвовал давнишним солдатом. Он сам не знал и никак не мог определить, сколько ему было лет; но зубы его, ярко белые и крепкие, которые все выкатывались своими двумя полукругами, когда он смеялся (что он часто делал), были все хороши и целы; ни одного седого волоса не было в его бороде и волосах, и все тело его имело вид гибкости и в особенности твердости и сносливости.
Лицо его, несмотря на мелкие круглые морщинки, имело выражение невинности и юности; голос у него был приятный и певучий. Но главная особенность его речи состояла в непосредственности и спорости. Он, видимо, никогда не думал о том, что он сказал и что он скажет; и от этого в быстроте и верности его интонаций была особенная неотразимая убедительность.
Физические силы его и поворотливость были таковы первое время плена, что, казалось, он не понимал, что такое усталость и болезнь. Каждый день утром а вечером он, ложась, говорил: «Положи, господи, камушком, подними калачиком»; поутру, вставая, всегда одинаково пожимая плечами, говорил: «Лег – свернулся, встал – встряхнулся». И действительно, стоило ему лечь, чтобы тотчас же заснуть камнем, и стоило встряхнуться, чтобы тотчас же, без секунды промедления, взяться за какое нибудь дело, как дети, вставши, берутся за игрушки. Он все умел делать, не очень хорошо, но и не дурно. Он пек, парил, шил, строгал, тачал сапоги. Он всегда был занят и только по ночам позволял себе разговоры, которые он любил, и песни. Он пел песни, не так, как поют песенники, знающие, что их слушают, но пел, как поют птицы, очевидно, потому, что звуки эти ему было так же необходимо издавать, как необходимо бывает потянуться или расходиться; и звуки эти всегда бывали тонкие, нежные, почти женские, заунывные, и лицо его при этом бывало очень серьезно.
Попав в плен и обросши бородою, он, видимо, отбросил от себя все напущенное на него, чуждое, солдатское и невольно возвратился к прежнему, крестьянскому, народному складу.
– Солдат в отпуску – рубаха из порток, – говаривал он. Он неохотно говорил про свое солдатское время, хотя не жаловался, и часто повторял, что он всю службу ни разу бит не был. Когда он рассказывал, то преимущественно рассказывал из своих старых и, видимо, дорогих ему воспоминаний «христианского», как он выговаривал, крестьянского быта. Поговорки, которые наполняли его речь, не были те, большей частью неприличные и бойкие поговорки, которые говорят солдаты, но это были те народные изречения, которые кажутся столь незначительными, взятые отдельно, и которые получают вдруг значение глубокой мудрости, когда они сказаны кстати.
Часто он говорил совершенно противоположное тому, что он говорил прежде, но и то и другое было справедливо. Он любил говорить и говорил хорошо, украшая свою речь ласкательными и пословицами, которые, Пьеру казалось, он сам выдумывал; но главная прелесть его рассказов состояла в том, что в его речи события самые простые, иногда те самые, которые, не замечая их, видел Пьер, получали характер торжественного благообразия. Он любил слушать сказки, которые рассказывал по вечерам (всё одни и те же) один солдат, но больше всего он любил слушать рассказы о настоящей жизни. Он радостно улыбался, слушая такие рассказы, вставляя слова и делая вопросы, клонившиеся к тому, чтобы уяснить себе благообразие того, что ему рассказывали. Привязанностей, дружбы, любви, как понимал их Пьер, Каратаев не имел никаких; но он любил и любовно жил со всем, с чем его сводила жизнь, и в особенности с человеком – не с известным каким нибудь человеком, а с теми людьми, которые были перед его глазами. Он любил свою шавку, любил товарищей, французов, любил Пьера, который был его соседом; но Пьер чувствовал, что Каратаев, несмотря на всю свою ласковую нежность к нему (которою он невольно отдавал должное духовной жизни Пьера), ни на минуту не огорчился бы разлукой с ним. И Пьер то же чувство начинал испытывать к Каратаеву.
Платон Каратаев был для всех остальных пленных самым обыкновенным солдатом; его звали соколик или Платоша, добродушно трунили над ним, посылали его за посылками. Но для Пьера, каким он представился в первую ночь, непостижимым, круглым и вечным олицетворением духа простоты и правды, таким он и остался навсегда.
Платон Каратаев ничего не знал наизусть, кроме своей молитвы. Когда он говорил свои речи, он, начиная их, казалось, не знал, чем он их кончит.

Метео́р (др.-греч. μετέωρος, «метеорос»), «парящий в воздухе» - явление, возникающее при сгорании в атмосфере Земли мелких метеорных тел (например, осколков комет или астероидов). Аналогичное явление большей интенсивности (ярче звёздной величины −4) называется болидом. Бывают встречные и догоняющие. Эти междисциплинарные явления изучаются метеоритикой (разделом астрономии), а также физикой атмосферы.

В исторической науке общий термин метеор (небесный) означал любые явления, наблюдаемые в атмосфере (не только сгорание метеорного тела в атмосфере). В частности, к ним относятся: гидрометеоры - дождь, роса, туман и тому подобные, оптические метеоры - мираж, заря, гало и тому подобные, электрометеоры - молния, огни Святого Эльма и тому подобные. Изучением большинства метеоров сегодня занимаются «наука о метеорах» (метеорология), а также физика атмосферы.

Метеоры следует отличать от метеоритов и метеороидов. Метеором называется не объект (то есть метеороид), а явление, то есть светящийся след метеороида. И это явление называется метеором независимо от того, улетит ли метеороид из атмосферы обратно в космическое пространство, сгорит ли в ней за счёт трения или упадёт на Землю метеоритом. Если метеор пролетел через атмосферу, не коснувшись земной поверхности, и продолжает своё движение в космическом пространстве, то он называется «коснувшимся».

Отличительными характеристиками метеора, помимо массы и размера, являются его скорость, высота воспламенения, длина трека (видимый путь), яркость свечения и химический состав (влияет на цвет горения). Так, при условии, что метеор достигает 1-й звёздной величины при скорости вхождения в атмосферу Земли 40 км/с, загорается на высоте 100 км, а потухает на высоте 80 км, при длине пути в 60 км и расстоянии до наблюдателя в 150 км, то продолжительность полёта составит 1,5 с, а средний размер составит 0,6 мм при массе 6 мг.

Часто метеоры группируются в метеорные потоки - постоянные массы метеоров, появляющиеся в определённое время года, в определённой стороне неба. Широко известны такие метеорные потоки как Леониды, Квадрантиды и Персеиды. Все метеорные потоки порождаются кометами в результате разрушения в процессе таяния при прохождении внутренней части Солнечной системы.

Во время визуальных наблюдений метеорных потоков кажется, что метеоры вылетают из одной точки на небе - радианта метеорного потока. Это объясняется сходным происхождением и относительно близким расположением космической пыли в космическом пространстве, являющейся источником метеорных потоков.

Метеорный поток

Чаще всего звёздным или метеорным дождём называют метеорный поток большой интенсивности (с зенитным часовым числом более тысячи метеоров в час).

Поскольку метеорные рои занимают чётко определённые орбиты в космическом пространстве, то, во-первых, метеорные потоки наблюдаются в строго определённое время года, когда Земля проходит точку пересечения орбит Земли и роя, а во-вторых, радианты потоков при этом оказываются в строго определённой точке на небе. По созвездию, в котором расположен радиант, или по ближайшей к радианту звезде метеорный поток и получает своё название.

Орбиты некоторых метеорных роёв очень близки к орбитам существующих или существовавших в прошлом комет, и по мнению учёных образовались в результате их распада. Например, Ориониды и эта-Аквариды связаны с кометой Галлея.

Астрономами было зарегистрировано около тысячи метеорных потоков. Однако с развитием автоматизированных средств наблюдений звёздного неба количество их сократилось. На настоящий момент имеют подтверждение 64 метеорных потока, ещё более 300 ожидают подтверждения.

МЕТЕОРЫ И МЕТЕОРИТЫ

Метеором называется космическая частица, которая попадает в земную атмосферу на высокой скорости и полностью сгорает, оставляя за собой яркую светящуюся траекторию, в просторечии называемую падающей звездой. Продолжительность этого явления и цвет траектории могут меняться, хотя большинство метеоров появляется и исчезает за долю секунды.

Метеорит представляет собой более крупный фрагмент космического вещества, который не полностью сгорает в атмосфере и падает на Землю. Вокруг Солнца вращается множество таких фрагментов, различающихся по размеру от нескольких километров до менее 1 мм. Некоторые из них являются частицами комет, подвергшихся распаду или прошедших через внутреннюю часть Солнечной системы.

Единичные метеоры, которые попадают в земную атмосферу случайно, называются спорадическими метеорами. В определенное время, когда Земля пересекает орбиту кометы или остатков кометы, случаются метеорные дожди.

При наблюдении с Земли траектории метеоров во время метеорного дождя как будто исходят из определенной точки созвездия, которая называется радиантом метеорного дождя. Этот феномен возникает из-за того, что частицы находятся на одной орбите с кометой, фрагментами которой они являются. Они попадают в атмосферу Земли с определенного направления, соответствующего направлению орбиты при наблюдении с Земли. К наиболее заметным метеорным дождям относятся Леониды (в ноябре) и Персеиды (в конце июля). Ежегодно метеорный дождь бывает особенно сильным, когда частицы собираются в плотный рой на орбите и Земля проходит через этот рой.

Метеориты, как правило, бывают железными, каменными или железокаменными. Скорее всего, они образуются в результате столкновений между более крупными телами в поясе астероидов, когда отдельные каменные фрагменты разлетаются по орбитам, пересекающим орбиту Земли. Самый крупный из обнаруженных метеоритов весом в 60 тонн упал в Юго-Западной Африке. Считается, что падение очень крупного метеорита ознаменовало конец эпохи динозавров много миллионов лет назад. В 1969 году метеорит распался в небе над Мексикой, разбросав тысячи фрагментов на большой площади. Последующий анализ этих фрагментов привел к теории, согласно которой метеорит образовался в результате взрыва ближайшей сверхновой несколько миллиардов лет назад.

См. также статьи "Атмосфера Земли", "Кометы", "Сверхновая".

Из книги Энциклопедический словарь (М) автора Брокгауз Ф. А.

Из книги Большая Советская Энциклопедия (МЕ) автора БСЭ

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Все обо всем. Том 3 автора Ликум Аркадий

Из книги 3333 каверзных вопроса и ответа автора Кондрашов Анатолий Павлович

Из чего сделаны метеоры? Возможно, вам приходилось наблюдать картину, когда одна из звезд, вдруг сорвавшись с неба, устремлялась к земле. Долгое время эти падающие звезды оставались загадкой для людей. На самом деле эти объекты не имеют к настоящим звездам никакого

Из книги Астрономия автора Брейтот Джим

Чем метеоры отличаются от метеоритов? Метеоры, или «падающие звезды», – это кратковременные световые явления в земной атмосфере, вспышки, порождаемые частицами космического вещества (так называемыми метеорными телами), которые со скоростью в десятки километров в

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

МЕТЕОРЫ И МЕТЕОРИТЫ Метеором называется космическая частица, которая попадает в земную атмосферу на высокой скорости и полностью сгорает, оставляя за собой яркую светящуюся траекторию, в просторечии называемую падающей звездой. Продолжительность этого явления и цвет

Из книги Краткий справочник необходимых знаний автора Чернявский Андрей Владимирович

Из книги 100 великих тайн Вселенной автора Бернацкий Анатолий

Метеориты Таблица

Из книги 100 великих загадок астрономии автора Волков Александр Викторович

Глава 13. Метеориты – гости из глубин Вселенной

Из книги 100 великих монастырей автора Ионина Надежда

Болиды – «поющие» метеориты Видимо, прежде чем начать разговор о болидах, необходимо выяснить, что же скрывается за этим термином? Следует сразу отметить, что четкого определения для этих небесных тел нет. А в целом это метеор, но только издающий при полете звуки.Вообще же

Из книги Страны и народы. Вопросы и ответы автора Куканова Ю. В.

Метеориты и дела земные Выше уже говорилось о том, что людям метеориты, или небесные камни, известны с незапамятных времен. По этой причине они и свои названия получали в соответствии с тем, откуда они явились на землю. Например, хетты и шумеры называли найденные на земле

Из книги Я познаю мир. Арктика и Антарктика автора Бочавер Алексей Львович

Метеориты помогли эволюции? С момента своего возникновения Земля регулярно подвергалась бомбардировкам. На ее поверхность рухнуло множество метеоритов. Большая часть этих «звездных камней» происходит из пояса астероидов, пролегающего между Марсом и Юпитером. Этот

Из книги автора

Из книги автора

Что такое Метеоры? Метеоры – известные греческие монастыри, уникальные в первую очередь тем, что все они расположены на вершинах скал, достигающих в высоту 600 метров над уровнем моря. Они были построены в Х веке, шесть до сих пор являются действующими.Скалы, на которых



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Патриарх кирилл - агент кгб, миллиардер и опытный бизнесмен Гундяев кирилл кгб Патриарх кирилл - агент кгб, миллиардер и опытный бизнесмен Гундяев кирилл кгб Метеоры и метеориты Полёт метеоров в земной атмосфере Метеоры и метеориты Полёт метеоров в земной атмосфере Как взрываются звёзды Как образуется сверхновая Как взрываются звёзды Как образуется сверхновая