Блок двигателя внутреннего сгорания. Блок цилиндров: как он появился, развивался и зачем вообще нужен

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Основой поршневого двигателя внутреннего сгорания является блок цилиндров. Блок цилиндров двигателя применяется на ДВС с 2 или более цилиндрами. Выполняется блок цилиндров в виде одной цельнолитой детали, которая предназначена для следующих функций: объединяет все цилиндры двигателя, является основой для навесных деталей (ГБЦ, картер) и имеет внутри конструкции места (постели) для коленвала, каналы для систем смазки и охлаждения.

Из чего изготавливается блок цилиндров

Наиболее распространенным материалом для изготовления блока цилиндров двигателя является чугун. Это традиционный материал. Следующим по списку идёт алюминий в виде различных сплавов. Наиболее редкий материал для блока цилиндров – магниевый сплав.

  • Чугун имеет такие положительные характеристики, как жёсткость и малая чувствительность к перегреву двигателя. Блок цилиндров, устройство, которое работает в постоянной смене температурных режимов, поэтому чугунный блок здесь лидирует. При этом есть большой минус чугунного блока – большая масса.
  • Алюминий имеет такие положительные свойства, как отличное охлаждение двигателя и маленькая масса. Особенностями алюминиевых блоков является подбор и установка гильз. Наиболее распространенными сегодня является технология Locasil – запрессовка гильз из алюминий – кремния и Nicasil – никелевое покрытие. Недостаток второй технологии – она не ремонтнопригодна. Блок цилиндров никосиловой технологии не подлежит расточке, а меняется в сборе. Это накладно для владельца автомобиля.
  • Магниевый сплав не применяется для конвейерного производства блока цилиндров в силу своей дороговизны. Хотя, является идеальным сочетанием жёсткости и крепости чугуна и лёгкости алюминия.

Основные составляющие блока цилиндров

  • Головка блока цилиндров (ГБЦ). Крепится сверху блока при помощи направляющих шпилек и болтов крепления ГБЦ. Между ГБЦ и блоком цилиндров находится очень важная деталь – прокладка блока цилиндров.
  • Прокладка блока цилиндров бывает асбестометаллической, бесасбестовой или металлической.
  • Цилиндр двигателя – это гильзы, которые применяются в двух вариантах: впрессованные непосредственно в блок цилиндров промышленным способом (как правило для алюминиевых блоков); гильзы съёмные: «мокрого» и «сухого» типов.
  • Картер . Является конструктивной нижней частью блока цилиндров. Выполняет функцию корпуса для КШМ (кривошипно-шатунного механизма). Снизу картер закрывается поддоном картера.

В самом корпусе блока цилиндров устроены отверстия и каналы для систем смазки и охлаждения двигателя. Сливная пробка блока цилиндров предназначена для слива охлаждающей жидкости, в то время как для слива моторного масла, существует пробка в поддоне картера.

В полости блока цилиндров существуют места для размещения привода распредвала. Это место спереди закрывает крышка блока цилиндров. В нижней части блока располагаются опоры для коренных подшипников коленвала. Успехов вам в постижении тайн устройства блока цилиндров двигателя.

По сути блок цилиндров двигателя - это основной корпус мотора без его внутренностей - головки блока цилиндров, поршней, шатунов, коленчатого вала, маховика и других деталей - просто единый блок цилиндров.

Типичный блок цилиндров 8-цилиндрового двигателя

Большинство блоков двигателей изготовлено частично из алюминия и частично из чугуна, хотя в конце 1990-х годов проводилось много экспериментов, и некоторые блоки моторов тогда пытались сделать даже из пластика. Такие экспериментальные материалы были использованы в прототипах автомобилей в надежде разработки более лёгких и эффективных машин. Дело в том, что чугунный блок цилиндров довольно большой по размерам и составляет значительную часть веса автомобиля. Блок цилиндров обычно требует несколько человек или специальное оборудование, чтобы поднять его.

Как Вы можете увидеть из фото выше, блок цилиндров это не просто прямоугольный корпус - это сплав сложной формы с многочисленным отверстиями (самые крупные из которых - для коленвала и поршней), каналами, углублениями и выступами. Ряд каналов и проходов внутри включают магистраль и предназначен для подачи антифриза из радиатора во все горячие участки двигателя, предотвращая его перегрев . После того как охлаждающая жидкость проциркулирует по всему двигателю, она возвращается в радиатор для охлаждения с помощью вентилятора и вновь отправляется обратно в двигатель.

Ядро блока цилиндров двигателя внутреннего сгорания - это всегда цилиндры. Количество цилиндров определяет размер и размещение блока, и большинство автомобилей имеют от четырёх до восьми цилиндров. Существует три типа блоков двигателей в зависимости от расположения относительно друг друга цилиндров:

  • рядный блок цилиндров;
  • V-образный блок цилиндров;
  • оппозитный блок цилиндров.

К нижней части блока крепится масляный поддон, который является по своей сути ванной для смазочного масла двигателя. Периодически моторное масло необходимо менять , и масляный поддон в этом случае опустошается от старого масла и наполняется затем новым.

Во время нормальной работы блок цилиндров двигателя становится очень горячим, и водители должны быть осторожны, касаясь его.

Термин "Шорт-блок" двигателя чаще всего употребляется, когда дела очень плохи, и реже, когда хочется чего-то новенького. Объясняем: шорт-блок двигателя - это такой набор блока цилиндров двигателя и ряда компонентов мотора, который требуется чаще всего при износе поршневой как причине дорогостоящего ремонта. Именно шорт-блок - отличная альтернатива покупке целого двигателя , так как при износе поршневой группы фактически не изнашиваются многие детали двигателя, и они не требуют замены, поэтому цельный двигатель в сборе покупать для многих не имеет смысла, а шорт-блок специально сконструирован так, чтобы включать в себя только самые необходимые компоненты для замены. Второй случай (когда хочется чего-то новенького) - это когда шорт-блок - это не просто альтернатива двигателю в сборе, а средство улучшения динамики автомобиля - у такого шорт-блока цилиндры с поршнями могут быть большего диаметра.

Шорт-блок мотора обычно включает в себя поршни с кольцами (уже запрессованный в блок цилиндров), шатуны и коленчатый вал. Шорт-блоки всегда требуют установки дополнительных внутренних частей, которые включают (но не ограничиваются):

  • масляный насос,
  • масляный поддон,
  • выпускной коллектор,
  • головка блока цилиндров (ГБЦ),
  • прокладки.

Тем не менее, шорт-блок шорт-блоку рознь, и набор тех или иных компонентов зависит от модели двигателя и автомобиля. Многие шорт-блоки доступны с распределительными валами и многими дополнительными частями (в том числе прокладками, небольшим рядом датчиков).

Шорт-блок 4-хцилиндрового двигателя с набором поршней, шатунов и коленвалом

Но существует ещё и так называемый лонг-блок - это улучшенный и более укомплектованный шорт-блок, который включает в себя, помимо того, чем комплектуется шорт-блок, ещё головку блока цилиндров, масляный поддон, выпускyой коллектор, клапанную крышку и ещё ряд деталей. Фактически лонг-блок - это почти полностью укомплектованный двигатель.

Блок цилиндров


Блок цилиндров или блок-картер является остовом двигателя. На нем и внутри него располагаются основные механизмы и детали систем двигателя. Блок цилиндров может быть отлит из серого чугуна (двигатели автомобилей ЗИЛ -130, MA3-5335, КамАЭ-5320) или из алюминиевого сплава (двигатели автомобилей ГАЗ -24 «Волга», ГАЭ -53А и др.). Горизонтальная перегородка делит блок цилиндров на верхнюю и нижнюю части. В верхней плоскости блока и в горизонтальной перегородке расточены отверстия для установки гильз цилиндров. В цилиндре, являющемся направляющей при движении поршня, совершается рабочий цикл двигателя. Гильзы могут быть мокрыми или сухими. Гильзу цилиндра называют мокрой, если она омывается жидкостью системы охлаждения, и сухой, если непосредственно не соприкасается с охлаждающей жидкостью.

Рис. 1. Блок цилиндров и головка блока V-образного двигателя: 1 - блок цилиндров; 2 - прокладка головки блока; 3 - камера сгорания; 4 - головка блока; 5 - гильза цилиндра; 6 - уплотнительное кольцо; 7 - шпильки

Цилиндры могут быть отлиты из серого чугуна вместе со стенками водяной рубашки в виде одного блока или в виде отдельных гильз, устанавливаемых в блок. Двигатели, имеющие цилиндры, изготовленные в виде сменных мокрых гильз, проще ремонтировать и эксплуатировать (двигатели автомобилей ГАЗ -24 «Волга», ГАЭ -53А, ЗИЛ -130, MA3-5335, КамАЗ-5320 и др.).

Внутренняя поверхность цилиндра, внутри которой перемещается поршень, называется зеркалом цилиндра. Ее тщательно обрабатывают для уменьшения трения при движении в цилиндре поршйя с кольцами и часто закаливают для повышения износостойкости и долговечности. Гильзы в блох цилиндров устанавливают так, чтобы охлаждающая жидкость не проникала в них и в поддон, а газы не прорывались из цилиндра. Необходимо предусмотреть и возможность изменения длины гильз в зависимости от температуры двигателя. В целях фиксации вертикального расположения гильз они имеют специальный бурт для упора в блок цилиндров и установочные пояса. Мокрые гильзы в нижней части уплотняют резиновыми кольцами, размещаемыми в канавках блока цилиндров (двигатели автомобиля КамАЭ-5320), в канавках гильз (двигатели автомобилей MA3-5335, ЗИЛ -130 и др.), или медными кольцевыми прокладками, устанавливаемыми между блоком и опорной поверхностью нижнего пояса гильзы (двигатели автомобилей ГАЗ -24 «Волга», ГАЭ -53А и др.). Верхний торец гильзы выступает над плоскостью блока цилиндров на 0,02-0,16 мм, что способствует лучшему обжатию прокладки головки блока и надежному уплотнению гильзы, блока и головки блока.

Рис. 2. Схемы цилиндров двигателей: а - без гильз, но с короткой вставкой (автомобилей ЗИЛ -157 К, ГАЗ -52-04); б и в - с «мокрой» гильзой (дизели ЯМЗ -2Э6 и автомобиля КамАЗ-5320); г - с «мокрой» гильзой, в которую запрессована короткая вставка (на автомобилях ГАЗ -24 «Волга», ГАЗ -5ЭА, ЗИЛ -130 и др.); 1 - блок цилиндров 2 г- водяная рубашка; 3 - вставка; 4, 5 к 6 - гильзы цилиндров; 7 - уплотнительные кольца (резиновые или медные, устанавливаемые под бурт)

Во время работы двигателя в верхней части цилиндров сгорает рабочая смесь. Горение сопровождается выделением продуктов окисления, которые вызывают коррозию цилиндров. Для повышения износостойкости цилиндров в некоторых двигателях применяют вставки из антикоррозионного чугуна. Их запрессовывают в блок цилиндров (двигатели автомобилей ЗИЛ -130К, ГАЗ -52-04) или в гильзы цилиндров (двигатели автомобилей ГАЗ -24 «Волга», ГАЗ -бЗА, ЗИЛ -130 и др.). Это усложняет технологию изготовления двигателя. В перспективе конструкторы предполагают использовать специальные металлы, что позволит отказаться от применения вставок в цилиндрах.

Поперечные вертикальные перегородки внутри блока цилиндров совместно с передней и задней стенками обеспечивают его необходимую прочность и жесткость. В этих перегородках, а также в передней и задней стенках блока расточены гнезда под верхние половины коренных подшипников коленчатого вала. Нижние половины коренных подшипников помещены в крышках, прикрепленных к блоку на шпильках или болтами.

В V-образных двигателях один из рядов блока цилиндров несколько смещен относительно другого, что вызвано расположением на шатунной шейке коленчатого вала двух шатунов: одного для правого, а другого - для левого блоков. Так, в V-образных двигателях автомобилей ГАЗ -53А левый блок цилиндров смещен вперед (по ходу автомобиля) на 24 мм, а автомобилей ЗИЛ -130 - на 29 мм относительно правого блока. Нумерация цилиндров указана вначале для правого блока цилиндров (по ходу автомобиля), а затем для левого: ближайший к вентилятору цилиндр имеет номер один и т. д.

Цилиндр с головкой служит пространством, где осуществляется рабочий процесс двигателя; стенки цилиндра направляют движение поршня.

Блоком цилиндров называется общая отливка, в которой располагаются цилиндры. У рядных двигателей имеется одна секция блока цилиндров, а у V-образных - две секции (правая и левая), объединяемые общим картером. Блок цилиндров изготовляется вместе с картером. Эта отливка, называемая блок-картером, служит для крепления и сборки всех механизмов и устройств двигателя.

Блок-картер отливается из чугуна или алюминиевого сплава.

В рядных двигателях при изготовлении блока из чугуна цилиндры отливаются вместе с блоком. Внутренняя рабочая поверхность цилиндров 6, тщательно обработанная и отшлифованная, называется зеркалом цилиндра. Между стенками цилиндров и наружными стенками блока имеется полость 8, которая заполняется водой, охлаждающей двигатель, и называется водяной рубашкой.

В случае отливки блок-картера из алюминиевого сплава, а также и при чугунном блоке у V-образных двигателей, цилиндры изготовляются в виде отдельных чугунных гильз, устанавливаемых в отверстия верхней и нижней перегородок блока. В блоке гильза закрепляется верхним или нижним буртом, входящим в выточки перегородок блока, и зажимается устанавливаемой сверху на блок головкой на прокладке.

Гильза непосредственно соприкасается с водой, циркулирующей в водяной рубашке, и называется «мокрой». В этом случае гильза надежно уплотняется в нижней перегородке блока с помощью медного или резинового кольца или нескольких резиновых колец, устанавливаемых внизу в выточках на гильзе.

В верхнюю часть цилиндров блока или гильз, наиболее подвергающихся воздействию высокой температуры и разъедающему действию отработавших газов, обычно запрессовывают короткие гильзы из специального износоустойчивого антикоррозионного чугуна для увеличения срока службы цилиндров двигателя.

При нижнем расположении клапанов с одной стороны блока рядного двигателя имеются впускные и выпускные каналы и гнезда, в которых устанавливаются клапаны. С этой же стороны блока размещена камера - клапанная коробка, в которой располагаются детали механизма газораспределения. Клапанная коробка закрывается одной или двумя крышками.

В случае верхнего расположения клапанов в боковой камере блока или обеих его секций при V-образной конструкции располагаются толкатели и штанги механизма газораспределения.

К передней части блок-картера крепится крышка распределительных шестерен, отливаемая из чугуна или алюминиевого сплава. К задней части блок-картера присоединен чугунный картер маховика. В передней и задней стенках блок-картера и внутренних его перегородках располагаются опоры коленчатого и распределительного валов.

Верхняя плоскость блока цилиндров или каждой его секции при V-образной конструкции тщательно обрабатывается и на нее устанавливается общая головка, закрывающая цилиндры сверху. В головке над цилиндрами сделаны углубления, образующие камеры сгорания, а также имеется водяная рубашка, сообщающаяся с водяной рубашкой блока. При верхнем расположении клапанов в головке цилиндров, кроме того, размещены седла клапанов и отлиты впускные и выпускные каналы. В головке имеются отверстия с резьбой для ввертывания свечей зажигания.

Головка цилиндров у карбюраторных двигателей отливается из алюминиевого сплава. Такая головка обладает высокой теплопроводностью, вследствие чего снижается температура рабочей смеси в цилиндрах двигателя в конце тактов сжатия. Это дает возможность повысить степень сжатия двигателя без появления детонационного сгорания топлива при работе двигателя.

Рис. 3. Формы камер сгорания двигателей

Головка цилиндров крепится к блоку гайками на шпильках или болтами. Между блоком и головкой установлена уплотняющая прокладка, устраняющая пропуск газов из цилиндров и протекание воды из водяной рубашки в месте стыка головки и блока. Прокладка изготовляется из асбестового картона, облицованного тонкой листовой сталью, или асбестового картона, пропитанного графитом с металлической окантовкой краев и отверстий. Снизу к фланцу картера двигателя крепится на уплотняющей прокладке болтами стальной штампованный поддон. Плоскость разъема картера совпадает с осью коленчатого вала или располагается ниже нее.

При нижнем одностороннем вертикальном расположении клапанов камера сгорания карбюраторного двигателя смещается в сторону

клапанов. Такая камера сгорания смещенного типа обеспечивает хорошее завихрение смеси при сжатии и наилучшие условия ее сгорания. Для сокращения длины I камеры сгорания и улучшения условий сгорания рабочей смеси, а также для уменьшения сопротивлений потоку смеси при впуске в цилиндр при такой камере обычно применяют наклонное к оси цилиндра расположение нижних клапанов.

При верхнем однорядном расположении клапанов камера сгорания в карбюраторных двигателях имеет обычно полуклиновую форму, обеспечивающую наилучшие условия для сгорания рабочей смеси. Полуклиновая камера сгорания вследствие простоты ее формы может быть вся подвергнута механической обработке. Это дает возможность обеспечить точное соблюдение величины объема камер сгорания во всех цилиндрах и повысить равномерность работы двигателя.

При обеих формах камеры сгорания часть ее поверхности (вытеснитель) близко расположена от днища поршня при положении его в в. м. т. Такие вытеснители способствуют лучшему распределению объема сжатой рабочей смеси и снижают возможность возникновения детонации при сгорании смеси.

При изготовлении блок-картера, головки и других деталей (крышки распределительных шестерен и т. п.) из алюминиевых сплавов значительно снижается общий вес двигателя. В случае применения съемных гильз легче изготовлять блок-картеры и удобнее ремонтировать цилиндры при их износе.

В дизелях давление газов при сгорании значительно выше, чем в карбюраторных двигателях, т. е. детали дизелей испытывают большие нагрузки, поэтому их делают более прочными и жесткими.

Блок цилиндров изготовляют из чугуна особенно прочным и жестким. Это достигается значительной толщиной стенок цилиндров и картера, наличием внутри картера большего количества ребер и смещением плоскости разъема картера значительно ниже оси коленчатого вала. Цилиндры двигателя снабжаются сухими (т. е. не соприкасающимися непосредственно с водой) гильзами, которые вставляют в расточенные цилиндры блока, или применяют мокрые вставные гильзы из специального чугуна. Головки цилиндров дизелей изготовляют из чугуна и также делают их более прочными и жесткими, чем у карбюраторных двигателей.

При большой степени сжатия для получения возможно малого объема камеры сгорания в дизелях применяют только верхнее расположение клапанов. В двигателях с непосредственным впрыском топлива (дизели ЯМЗ ) головка не имеет углублений над цилиндрами, а камера сгорания образуется соответствующим углублением в днище поршня.

К атегория: - Устройство и работа двигателя

На протяжении многих десятков лет моторы изготавливали из самых обычных материалов — стали, чугуна, меди, бронзы, алюминия. Совсем немного пластика, иногда какие-то мелкие элементы, вроде корпусов карбюраторов, — из магниевых сплавов. На волне тенденции к всемерному облегчению конструкций и увеличению мощности при улучшении экологической составляющей состав материалов с тех времен заметно изменился. Из чего же сегодня делают двигатели? Разбираемся.

Большая часть автовладельцев наверняка знает главный тренд современного автомобилестроения: увеличение мощности двигателя при постоянном уменьшении его объема и массы. Секрет такого сочетания кроется в том числе в новых материалах и конструктивах. Ну и, разумеется, тщательной проработке всех элементов силового агрегата, а также уже не скрываемом отсутствии избыточных (читай: невыгодных) запасов прочности.

Как ни странно, всевозможные нанотрубки и прочий хай-тек, о котором постоянно говорят в СМИ, в моторостроении на самом деле почти не применяются. В серийных моторах самыми дорогими и сложными материалами являются кремнийникелевые покрытия, металлокерамический композит (например, известный как FRM у Honda), различные полимерно-углеродные композиции и постепенно появляющиеся в серийных двигателях титановые сплавы, а также сплавы с высоким содержанием никеля, например Inconel. В целом же двигателестроение остается очень консервативной областью машиностроения, где смелые эксперименты в серийном производстве не приветствуются.

Прогресс обеспечивается в основном «тонкой настройкой» и применением давно известных технологий по мере их удешевления. Основная масса серийных агрегатов состоит в основном из чугуна, стали и алюминиевых сплавов — по сути, самых дешевых материалов в машиностроении. Однако тут все же есть место для новых технологий.

Самая крупная деталь любого мотора — блок цилиндров. Она же самая тяжелая. Долгие десятки лет основным материалом для блоков служил чугун. Он достаточно прочен, хорошо льется в любую форму, его обработанные поверхности обладают высокой износостойкостью. Список достоинств включает и невысокую цену. Современные моторы небольшого рабочего объема по-прежнему льются из чугуна, и вряд ли в ближайшее время индустрия полностью откажется от этого материала.

Основная задача в совершенствовании сплавов чугуна — это сохранение высокой твердости поверхности при улучшении его вспомогательных качеств, иначе это может привести к необходимости использования чугунных же гильз для блока цилиндров из более износостойкого сплава. Так изредка делают, но в основном на грузовых моторах, где эта технология финансово оправданна.

Алюминий в качестве материала блока применяется также очень давно и совершенствуется примерно в том же направлении. Усилия направлены в основном на улучшение возможностей его обработки, на снижение коэффициента расширения при сохранении необходимой пластичности материала, повышение необходимых аспектов прочности сплавов.

Также развиваются технологии использования вторичного алюминия низкой очистки. Для таких сплавов применяются технологии, отличные от литья, причем налицо тенденция к изготовлению из алюминия блоков цилиндров более компактных моторов. Например, двигатель Volkswagen серии EA211 сегодня имеет алюминиевый блок, который оказался на 40% легче чугунного.

Магниевые сплавы значительно менее популярны. Они легче алюминиевых, но имеют значительно более низкую коррозийную стойкость, не переносят контакта с горячей охлаждающей жидкостью, со стальными крепежными деталями повышенной температуры. На рядных шестицилиндровых блоках моторов BMW серий N52 и N53, например, из магниевого сплава выполнена только внешняя часть блока, «рубашка» системы охлаждения. Для сравнительно длинного блока шестицилиндрового мотора это дает выигрыш в массе порядка 10 кг по сравнению с цельноалюминиевой конструкцией. Также магниевые сплавы используют для блок-картеров моторов с отъемными цилиндрами. В основном это двигатели мотоциклов.


Компоненты двигателя

Если с самой большой деталью мотора новые технологии и материалы не очень «дружат» в целом, то в частностях возможны интересные сюрпризы. Гильзы цилиндров у любого блока являются точкой приложения всех новейших технологий и материалов. Высокопрочный чугун, методы поверхностного упрочнения алюминиевых высококремнистых сплавов, гальванические покрытия на основе сплава карбида кремния с никелем, металлокерамические матрицы и стальное напыление широко используются даже на серийных моторах. Про чугун и высококремнистый алюминий говорить не будем, все же сами технологии не только старые, но и массовые. А вот про остальные материалы лучше рассказать чуть подробнее.

Упрочненные чугунные гильзы по технологии CGI (Compacted Graphite Iron) появились для реализации экстремально высокой степени форсирования у дизельных моторов. Этот чугун сильно отличается от распространенного серого чугуна. У него на 75% выше прочность на разрыв, на 40% выше модуль упругости, и он в два раза устойчивее к знакопеременным нагрузкам. А его сравнительно невысокая стоимость и прочность позволяют создавать литые чугунные блоки с массой меньше, чем у алюминиевых. Но в основном его применение ограничено гильзами и коленчатыми валами. Гильзы получаются очень тонкими, теплопроводными и при этом столь же технологичными и надежными, как обычные гильзы из чугуна. А коленчатые валы по прочности соперничают с коваными стальными при заметно меньшей себестоимости.

Покрытие по технологии Nicasil , в общем-то, не редкость и далеко не новинка, но оно остается одним из самых высокотехнологичных и перспективных в своей сфере. Изобрели его еще в 1967 году для роторно-поршневых двигателей, и засветиться в массовом автомобилестроении оно успело. Porsche его применял для гильз цилиндров с 1970-х, а в 1990-е его попытались применить и на более массовых моторах, например в BMW и Jaguar, но недостатки технологии и высокая цена заставили отказаться от него в пользу более дешевых методов поверхностного упрочнения высококремниевых сплавов, например по технологии Alusil.


Причем более вероятной причиной отказа является как раз повышенная стоимость блоков цилиндров с этим покрытием, связанная с низкой технологичностью процесса гальванического нанесения и высоким процентом не выявляемого сразу брака, который потом успешно списали на высокосернистые бензины.

Тем не менее это покрытие все еще остается лучшим выбором для создания рабочей поверхности в любом мягком металле, потому под различными торговыми наименованиями применяется в массовом и особенно гоночном двигателестроении. Например, под маркой SCEM в моторах Suzuki. Его недостатки в основном связаны с очень высокой стоимостью обработки и слабой приспособленностью к массовому производству при использовании с крупными многоцилиндровыми блоками.

Металлокерамическая матрица (MMC ) , более известная как FRM в моторах Honda, — еще один оригинальный и интересный материал. Например, двигатель на суперкаре NSX имел гильзы, выполненные по такой технологии. Опять же технология далеко не новая, но, как и материал, очень перспективная. Покрытие типа Nicasil тоже относится к MMC, но его приходится наносить гальваническим методом, и в качестве матрицы выступает достаточно твердый никель.

В технологии FRM материалом матрицы служит алюминий, а MMC получается в процессе заливки гильзы из волокнистого материала на основе карбоновой нити в алюминиевый блок. Использование углеродного волокна более технологично. К тому же матрица получается намного более толстой, чуть более мягкой, намного более упругой и абсолютно интегрированной в материал блока. Отслоение, как это происходило с Nicasil, попросту невозможно. Задиры и локальные повреждения в силу структуры материала ему почти не страшны, а в случае износа цилиндр можно расточить благодаря большому запасу по толщине.


Минусы у такого покрытия тоже имеются. Во-первых, немалая цена, во-вторых, жесткое отношение к поршневым кольцам, поскольку его структура плохо «настраивается». Тут не создать полноценной сетки хона, правда, масло хорошо удерживается в волокнах и без того. Края волокон очень жесткие, и даже сверхтвердые кольца имеют ограниченный ресурс, а поршень в местах контакта интенсивно изнашивается при малейшем биении, что подразумевает использование поршней с минимальным зазором и очень короткой юбкой. К тому же покрытие очень маслоемкое. В итоге у моторов постоянно наблюдался повышенный расход масла, что на определенном этапе не позволило выполнять жесткие экологические требования.

Впрочем, сейчас эта проблема уже не актуальна, новые катализаторы и новые поколения малозольных масел позволяют об этом не беспокоиться. Ну и, разумеется, цена нанесения покрытия такого типа заметно выше, чем у алюсила или чугунных гильз, но все же меньше, чем у Nicasil-подобных материалов.

Покрытия MMC разных типов также используются в целом ряде деталей двигателей. Например, в седлах клапанов в ГБЦ, упрочнениях крайних постелей распредвалов, особо нагруженных местах креплений элементов конструкции. Это позволяет широко применять цельноалюминиевые детали и снижать массу конструкции за счет упрощения. Некоторые детали двигателей могут иметь крупные элементы из MMC, например клапаны. Но это и сейчас удел не серийных конструкций.

Титановые сплавы также давно пытаются использовать в конструкции машин. В двигателях этот прочный, легкий и очень эластичный материал с превосходной химической стойкостью применяется очень ограниченно в силу высокой стоимости. Но можно найти серийные конструкции с деталями из титана. Титановые шатуны, например, давно устанавливаются в моторах Ferrari и тюнинговом подразделении AMG. Еще титан — неплохой выбор для пружин, шайб, рокеров и прочих элементов ГРМ, деталей теплообменников EGR, а также разных крепежных элементов. Кроме того, он используется для производства рабочих элементов высокопроизводительных турбин, а иногда —— для производства клапанов и даже поршней.

Теоретически детали из высококремнистых титановых сплавов с высоким содержанием интерметаллидов и сицилидов могут применяться в двигателях, но у большинства титановых сплавов наблюдается серьезная потеря прочности уже при температурах свыше 300 градусов — изменение пластичности в больших пределах и большой коэффициент расширения, что не позволяет создавать из них долговечные детали с низкой массой. Ограниченное применение имеет в двигателестроении и 3D-печать из титановых сплавов, например для создания выпускных систем на спорткарах.

А вот покрытия из нитрида титана — одни из самых популярных средств упрочнения поршневых колец. Этот материал отлично работает по кремниевому упрочненному слою гильз цилиндров. Его же используют как напыление на фаски клапанов, в том числе титановых, на торцы толкателей клапанного механизма и другие узлы двигателя. Начиная с 1990-х годов использование этого метода упрочнения неуклонно возрастает, и он вытесняет хромирование, азотирование и ТВЧ-закалку. Также нитрид титана является перспективным типом покрытия для гильз цилиндров: он может наноситься методом PA-CVD (плазмохимическое осаждение из газовой фазы), а значит, такие технологии могут стать серийными в ближайшее время, если будет спрос на новые износостойкие покрытия цилиндров.

Уже упомянутая 3D-печать также активно применяется для создания высокопрочных и высокоточных жаростойких деталей сплав Inconel. Это семейство никельхромовых жаростойких сплавов давно служит материалом для создания выпускных клапанов, верхних компрессионных колец, пружин и даже выпускных коллекторов, корпусов турбин и крепежного материала для высокотемпературного применения.

В последние годы, в связи с развитием технологий 3D-печати и активным использованием в них Inconel-сплавов, мелкосерийные ДВС все чаще обзаводятся деталями из этого очень перспективного материала. Рабочий диапазон деталей из него минимум на 150-200 градусов выше, чем у самых жаростойких сталей, и доходит до 1200 градусов. Как материал упрочнения сплавы Inconel используются серийно уже достаточно давно, так, в моторах Mercedes-Benz покрытие из Inconel применяется на моторах серий M272/M273.

Пластмассы также продолжают внедрять в конструкции двигателей. Выполненные из пластика элементы системы впуска и охлаждения — дело уже привычное. Но дальнейшее расширение номенклатуры маслостойких и теплостойких пластмасс с низким короблением позволило создать пластмассовые картеры ДВС, клапанные крышки, направляющие, корпуса малых конструкций внутри двигателя. Концепты моторов с блоком цилиндров из пластмассы, а точнее, из полимерно-углеродных композиций, уже были представлены публике. При незначительно меньшей прочности, чем у легких сплавов, пластик в производстве обходится дешевле и значительно лучше перерабатывается.

Каков итог?

Изучение вопроса применяемости материалов в двигателестроении показывает четкую направленность: для снижения массы и улучшения других характеристик применение каких-то суперматериалов либо не особо требуется, либо невозможно в принципе в силу физических и химических свойств. Развитие технологий идет путем эволюционным — усовершенствования как самого производства, так и традиционных материалов, реорганизации рабочего процесса и конструкторской оптимизацией. Так что даже в среднесрочной перспективе мы вряд ли увидим революцию в производстве ДВС, скорее речь будет идти о постепенном отказе от этого типа двигателя в принципе в пользу электротехнологий, хотя и там пока не наблюдается бурного технологического прорыва.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Мариупольская икона божией матери Мариупольская икона божией матери Как лишали девственности в разных странах мира? Как лишали девственности в разных странах мира? Варенье из сладкой ароматной дыни на зиму: секреты приготовления Варенье из сладкой ароматной дыни на зиму: секреты приготовления