Глеб Евгеньевич Лозино-Лозинский. Биографическая справка

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

25 декабря исполняется 100 лет ср дня рождения Глеба Лозино-Лозинского (1909-2001), генерального конструктора орбитального корабля "Буран", патриарха отечественной авиационно-космической техники.

Авиаконструктор Глеб Евгеньевич Лозино-Лозинский родился в городе Киеве (Украина) 25 декабря 1909 года по старому стилю (7 января 1910 года по-новому). Но так как в его документы никогда не вносили никаких изменений, своим днем рождения он считал 25 декабря 1909 года по новому стилю. Его отец, дворянин по происхождению, был присяжным поверенным.

Глеб Лозино-Лозинский окончил профтехшколу, где получил специальность слесаря, затем в 1930 году - Харьковский механико-машиностроительный институт по специальности "паротехника".

Трудовую деятельность начал в 1930 году инженером-расчетчиком на Харьковском турбогенераторном заводе. Принимал участие в проработке проекта первой отечественной паровой конденсационной турбины большой мощности, разработал новую методику расчета турбин. Одновременно он преподавал на курсах для квалифицированных рабочих.

Эта работа была продолжена в Ленинградском котлотурбинном институте.

В феврале 1941 года Лозино-Лозинский , а в июле того же года эвакуировался в Куйбышев.

Осенью 1941 года он был переведен в Конструкторское бюро Артема Микояна (КБ А.И. Микояна), где работал до 1976 года, с 1965 года был главным конструктором.

В КБ занимался проектами различных вариантов реактивных газотурбинных двигателей, разрабатывал двухступенчатую авиационно-космическую систему "Спираль". Автор проектов перехватчика МиГ-31 и фронтового истребителя МиГ-29. Участвовал в организации серийного производства семейства самолетов МиГ - от МиГ-9 до МиГ-31.

С 1976 по 1994 год Глеб Лозино-Лозинский был генеральным директором, главным конструктором Научно-производственного объединения (НПО) "Молния", который занимался разработкой планера орбитального корабля "Буран". В результате многолетней напряженной работы был создан многоразовый космический корабль с уникальными характеристиками. Первый и единственный полет "Бурана" состоялся 15 ноября 1988 года.

Помимо "Бурана", возглавляемое Лозино-Лозинским НПО создало космические аппараты "Бор-4" и "Бор-5", разработало проекты многоцелевой авиационно-космическая системы МАКС на базе самолета-носителя Ан-225 ("Мрия") и ряд самолетов "триплан" - от самолета-такси "Молния-1" до сверхтяжелого самолета "Геракл".

В 1994 году Глеб Лозино-Лозинский оставил пост Генерального директора НПО "Молния", но остался Генеральным конструктором НПО "Молния", сосредоточившись на конструкторской работе .

Лозино-Лозинский был одним из основателей Российской инженерной академии, в которой он возглавлял секцию "Авиакосмическая", являлся научным редактором журнала "Авиакосмическая техника и технология", организатором регулярно проводимого в Москве Международного аэрокосмического конгресса, заведующим кафедрой "Авиационно-космические системы" в МГТУ им. К.Э.Циолковского, автором многих книг и научных статей.

Глеб Лозино-Лозинский - доктор технических наук, был профессором Московского авиационного института, лауреат Ленинской премии (1962), Государственных премий СССР (1950,1952).

За заслуги он был удостоен звания Героя Социалистического Труда, награжден двумя орденами Ленина , орденами Трудового Красного Знамени, Красной Звезды, Октябрьской революции, "За заслуги перед Отечеством" IV степени, медалями.

В знак признания большого вклада Глеба Лозино-Лозинского в развитие мировой аэрокосмической науки и техники Германским обществом аэронавтики и астронавтики ему были присуждены престижные международные премии имени Зенгера и Вернера фон Брауна.

Скончался 28 ноября 2001 года в Москве.

Материал подготовлен на основе информации открытых источников

Фридрих Ницше

Проект «Спираль»

С дальнейшим ростом скоростей и высоты полетов авиация вышла на порог космоса. В начале 60-х годов в США строится и начинает первые полеты экспериментальный ракетоплан Х-15 (в ходе испытательных полетов достигнуты скорость М=6,72 и максимальная высота 107906 м) .

Американский ракетоплан Х-15-01 Х-20 на орбите

В нашей стране тоже велись работы по созданию своих ракетопланов , так как после окончания Второй мировой войны между Советским Союзом и США развернулось острейшее соперничество в космической сфере. Однако главным приоритетом в СССР в те времена было создание ракет, и очень многие и в армии, и в промышленности были крайне заинтересованы в том, чтобы ракетный бум, сопровождаемый неиссякаемыми финансовыми потоками, продолжался и впредь. Добиться этого было не так уж сложно, поскольку тогдашний глава государства Н. С. Хрущев спал и видел как бы попугать Штаты советскими ракетами. Со свойственной ему скоропалительностью и авнтюризмом Хрущев пришел к мысли, что раз есть ракеты, то авиация не нужна. Поэтому несколько авиационных КБ, где уже были начаты работы по созданию авиационных космических систем (АКС), были закрыты, после чего многие их сотрудники перешли в КБ В. Н. Челомея, пользовавшегося особым расположением Н. С. Хрущева (там работал его сын), где также разрабатывали свой вариант АКС. Но после того как в 1964 году Хрущев был снят со всех своих постов, главком ВВС К. А. Вершинин позвонил Челомею и потребовал, чтобы все материалы по ракетопланам тот передал в КБ Артема Микояна.

Артём Иванович Микоян

Идея авиационного старта в космос тогда, как говорится, витала в воздухе, - вспоминал Лозино-Лозинский. - А в 65-м году, не помню уж в каком месяце, меня пригласил к себе Артем Иванович и сказал, что нашему КБ поручено создать многоразовый самолет, который выводился бы в космос, стартуя с самолета-разгонщика. «Думаю назначить тебя главным конструктором, - сказал Микоян. - Ну как, возьмешься за такую работу?» Разумеется, я не мог от этого отказаться…

В качестве первой ступени мы предполагали использовать гиперзвуковой самолет-разгонщик (ГСР) с максимальной скоростью, в шесть раз превосходящей скорость звука. Для этого нужно было решить немало самых разных проблем. И с помощью специалистов ЦАГИ (Центрального аэрогидродинамического института имени Н. Е. Жуковского) мы нашли ответы на все вопросы и провели многочисленные продувки разгонщика в аэродинамической трубе, которые подтвердили правильность наших расчетов.

Г.Е.Лозино-Лозинский - главный конструктор АКС "Спираль"

Вспоминая о том, как шла работа над первой ступенью «Спирали», Глеб Евгеньевич неожиданно упомянул о чувстве гармонии:

Иногда именно оно определяет, принять или не принять ту или иную схему летательного аппарата…


Система СПИРАЛЬ - это гиперзвуковой самолёт-разгонщик ГСР с установленным орбитальным самолётом с ракетным ускорителем. Орбитальный самолёт стартовал с ГСР.

Согласно утвержденному Г.Е.Лозино-Лозинским 29 июня 1966 года аванпроекту "Спирали", авиационно-космическая система с расчетной массой 115 тонн представляла собой состыкованные воедино крылатые широкофюзеляжные многоразовые аппараты горизонтального взлета-посадки, спроектированные по схеме "несущий корпус-бесхвостка": 52-тонный (длина 38 м, размах 16,5 м) гиперзвуковой самолет-разгонщик ГСР (индекс "50-50") до скорости 6М и отделяемый от него, стартующий с его "спины" на высоте 28-30 км 10-тонный пилотируемый орбитальный самолёт (ОС) длиной 8 м и размахом крыла 7,4 м; на консоли крыла приходилось лишь 3,4 м, а остальная, большая часть несущей поверхности соотносилась с шириной фюзеляжа.


Гиперзвуковой самолёт-разгонщик 50-50

К ОС стыковался блок выведения, состоящий из топливного бака, в котором размещались основные компоненты кислород-керосин, и двух одноразовых ЖРД с тягой каждого около 100 тонн (Генерального конструктора В.П.Глушко). Блок выведения после вывода ОС в намеченную точку отделялся и падал в мировой океан. Диапазон высот рабочих орбит изменялся от минимальных, порядка 150-200 км, до максимальных 500-600 км; направление азимута запуска в связи с наличием ГСР определялось конкретным целевым назначением полета и в зависимости от точки старта могло варьироваться в пределах от 0º до 97º.


Основные составные элементы АКС "Спираль"

« Когда мы по-настоящему влезли в работу над первой ступенью, - продолжил свой рассказ Глеб Евгеньевич, - у нас возник новый взгляд на проектирование летательных аппаратов, который требует гармонического сочетания - подобно звукам в аккорде - всех компонентов и свойств самолета. Если раньше его облик определялся аэродинамикой, а силовая установка «вписывалась» в нее, то разгонщик мы проектировали, интегрируя силовую установку и аэродинамику. С тех пор, решая, принять или не принять ту или иную схему летательного аппарата, я без особых сомнений отдаю предпочтение той, которая вызывает во мне ощущение гармонии...


Гениальный конструктор двигатей Архип Иванович Люлька

Двигатели для разгонщика взялся конструировать Архип Михайлович Люлька. Они должны были работать на жидком водороде; испаряясь под влиянием высоких температур, он превращался в пар высокого давления, энергия которого затем срабатывала на турбине для привода компрессора. Как инженер-паротехник я, конечно, не мог не поддержать идею создания пароводородного двигателя. Отработанный же водород должен был потом сжигаться в форсажной камере.

Ну а наиболее интересной и оригинальной была, конечно, форма орбитального самолета, который должен был совершать свой полет в необычном диапазоне скоростей - от семи с половиной километров в секунду при запуске на орбиту до 70 метров в секунду при посадке. Нужно было к тому же защитить его от воздействия сверхвысоких температур при возвращении на Землю…»


схема полёта АКС "Спираль"

Орбитальный самолет конструкции Лозино-Лозинского - это несущий корпус из ниобиевого сплава с жаростойким покрытием и с очень большим радиусом носового затупления. Такая конфигурация позволяет во время космического спуска, когда воздух превращается в равновесную плазму с температурой около 6 тысяч градусов, снизить нагрев поверхности самолета до 1200–1400 градусов.

С той же целью корпус самолета должен был быть сделан в виде экрана, внешняя поверхность которого (черного цвета) излучала бы в окружающее пространство более 90 процентов тепла, передаваемого ей горячим обтекающим потоком. Еще одной защитой от перегрева должна была служить внутренняя поверхность, покрытая уплотненной «ватой» из двуокиси кремния. Корпус орбитального самолета должен был быть подвешен на ферменной конструкции на пятидесяти «шарнирах», в качестве которых предполагалось использовать керамические подшипники, что обеспечило бы ему необходимую степень свободы и исключило бы возможность температурной деформации.

Для этого самолета Лозино-Лозинский придумал «чудо-крылышки» (именно так, используя уменьшительно-ласкательный суффикс называл их сам конструктор), которые могут изменять угол наклона по отношению к вертикали от 45 до 90 градусов. Чем же была вызвана необходимость такого движения? Во время космического спуска орбитальный самолет проходит все диапазоны скоростей - от орбитальной до дозвуковой. При этом устойчивость и управляемость летательного аппарата в каждом из них зависит от местоположения так называемого аэродинамического фокуса (центра давления прироста аэродинамических сил). Поэтому на «шаттлах» и на «Буране», где неуправляемый аэродинамический фокус перемещается таким образом, что космоплан оказывается в неустойчивом положении, необходимо постоянно корректировать полет. (Это достигается с помощью достаточно сложных струйных газодинамических систем, отказ которых может привести к катастрофе).

Лозино-Лозинский избрал другое решение. Он дал возможность пилоту очень простым способом, изменяя развал крылышек, смещать этот фокус в нужном направлении, обеспечивая тем самым необходимый запас аэродинамической устойчивости.

Чтобы спуститься, ориентируй машину по горизонту, - объяснял особенности техники управления орбитальным самолетом заместитель Лозино-Лозинского Лев Пантелемонович Воинов, - а как только зацепился за атмосферу, следи за углом атаки и креном и регулируй их с помощью крылышек. И до посадки можешь быть абсолютно спокойным: прилетишь, куда нужно…

Движение «крылышек» помогает решить и другую задачу - защитить их передние кромки от перегрева. При спуске «крылышки» устанавливаются под углом 40-45 градусов, то есть приводятся в такое положение, что их передние кромки оказываются примерно в таких же аэродинамических условиях, что и задние: воздушные потоки не натекают, а стекают с них; поэтому на передних кромках нет «критических точек», в которых возникают максимальные температуры.

«Крылышки» не нагреваются свыше 640 градусов, а это значит, что изготавливать их можно из обычной - и достаточно легкой - жаропрочной стали. На «Буране» же и на американских кораблях многоразового использования в области «критических точек» установлена тяжелая углеродная защитах.

Боевой пилотируемый одноместный ОС многоразового применения предусматривал использование в вариантах разведчика, перехватчика или ударного самолета с ракетой класса "Орбита-Земля" и мог применяться для инспекции космических объектов .


Однако работа над «Спиралью» все же продолжалась, хотя теперь программа была переориентирована на летные испытания самолетов-аналогов. Создание же АКС «Спираль» отодвигалось на далекое и крайне неопределенное будущее…

Спустя несколько лет был построен дозвуковой аналог орбитального самолета; он сбрасывался с бомбардировщика ТУ-95 и совершал посадки в пилотируемом режиме (для этого он был оснащен воздушно-реактивным двигателем). Управлял самолетом летчик-испытатель Авиард Фастовец. Поведение самолета на гиперзвуковых скоростях исследовалось на крупномасштабных моделях, запускавшихся в космос с помощью ракет, снятых с боевого дежурства после того, как был выработан их ресурс.

Но чтобы эти запуски могли состояться, вновь потребовалось вмешательство госпожи Случайности.

Для моделей «Спирали», - рассказывал Воинов, - необходим был весьма дорогостоящий металл - ниобий. Получить его официальным путем не представлялось возможным. Но нам повезло: оказалось, что в одном из наших подразделений работает зять министра, распоряжавшегося ниобием. Мы побеседовали с этим молодым человеком, и он сказал: «Я поговорю с папой. Папа найдет материал».

И папа нашел. Вскоре он прислал в адрес «Молнии» вагон ниобия, который шел в отвалы при добыче урана…

В начале 70-х годов, когда бурно развивалась ракетная техника, Лозино-Лозинский сказал на одном из совещаний: «Несмотря на все восторги по поводу ракет, не следует забывать и о крылатых авиационно-космических системах. Они нам еще пригодятся». Запуски «Бурана» и американских «шаттлов» подтвердили справедливость его слов.

Проект «Спираль» вызвал большой интерес у Королева: Сергей Павлович даже занимался созданием ускорителя, который должен был после отделения орбитального самолета от ГСР вывести его на орбиту. Позже Королев предложил использовать вместо гиперзвукового самолета-разгонщика ракету, которая выводила в космос корабль «Восток».

Вместе с компоновщиком «Спирали» Яковом Ильичом Селецким, - рассказывал Лев Пантелемонович Воинов, - мы ездили к Королеву и обсуждали, как установить на его ракету наш самолет. (Без топлива он весил 7 тонн). Королев даже подбрасывал нам идеи: я, мол, как старый планерист могу вывести вас на длинном тросе. Пойдет ракета и потащит ваш самолет… Нам понравился этот вариант, но утвердить его мы не смогли.

Предполагалось, что в недалеком будущем орбитальный самолет с помощью королевской ракеты совершит облет Земли. Однако осуществить этот замысел нам не удалось. Через несколько дней после встречи Воинова и Селецкого с Королевым Сергей Павлович лег в больницу, из которой уже не вышел…


Модель АКС "Спираль"

Дальность полета ГСР закладывалась до 3000 км, преодоление теплового барьера обеспечивалось соответствующим подбором конструкционных и теплозащитных материалов. В дальнейшей перспективе предусматривалась возможность создания на базе "6-махового" ГСР пассажирского самолета. Потенциал заложенных в проект идей оказался настолько велик, что в дальнейшем на их основе в НПО "Молния" велась проработка гиперзвукового пассажирского самолета на сто мест с дальностью полета до 10000 км .

Масса выводимого на орбиту ИСЗ полезного груза составляла до 1300 кг. В грузовом отсеке в зависимости от задач полета могла устанавливаться шлюзовая камера, для летчика предполагалось установить катапультное кресло с необходимым обеспечением его жизнедеятельности на всех этапах полета. Интегрированная система навигации и управления полетом существенно упрощала управление на всех этапах полета от разделения с ГСР до посадки. При проектировании конструкторы исходили из потребных 20-30 полетов системы в год.

ОС представлял собой летательный аппарат с несущим корпусом и крыльями, отклоняющимися вверх (с раздельным изменением угла поперечного V для каждой консоли крыла) для исключения прямого обтекания их тепловым потоком при прохождении участка плазмообразования, а также для управления по крену. Аэродинамические характеристики ОС обеспечивали боковую дальность при спуске с орбиты порядка 1500-1800 км (с работающим ТРД расчетная дальность бокового маневра на дозвуковой крейсерской скорости далеко превосходила 2000 км). Чтобы улучшить посадочные характеристики, на последнем, атмосферном участке спуска была предусмотрена перебалансировка аппарата на малые углы атаки с поворотом консолей из вертикального (килевого) положения фиксированное крыльевое. Аэродинамическое качество в дозвуковом полете с разложенными консолями крыла возрастало до 4 с соответственным увеличением дальности планирования.

ОС был оборудован двигательной установкой (ДУ), состоящей из двигателя орбитального маневрирования, с помощью которого изменялась высота орбитального полета, и необходимого количества ракетных двигателей системы управления. Запасов топлива для двигателей системы управления хватало на орбитальный полет продолжительностью до двух суток.

Реально программа НИОКР и испытаний "Спирали" реализована в меньших масштабах: для исследования характеристик устойчивости и управляемости на разных этапах полета и оценки теплозащиты из высокопрочных жаростойких материалов до закрытия работ были построены аналоги ОС в трех комплектациях (аналог для исследований в полетах на дозвуковой скорости - имитация атмосферного участка захода на посадку при возвращении с орбиты - получил кодовое обозначение "105.11", на сверхзвуке - "105.12", на гиперзвуке - "105.13") и в условиях космического полета испытаны масштабные летающие модели серии "Бор".


Эскиз 105.11 на котором летал А.Фастовец
Дозвуковой аналог орбитального самолёта МиГ-105.11 перед бросковыми испытаниями с бомбардировщика


27 октября 1977 г. был проведен первый воздушный старт аналога с самолета-носителя; пилотировал аппарат Авиард Гаврилович Фастовец.

Аналог орбитального самолета "105.11" успешно прошел серию дозвуковых летных испытаний и полностью подтвердил заявленные характеристики. Вначале (1976г.) выполнялись "подлеты": после отрыва от земли (с помощью турбореактивного двигателя РД-36К конструкции П.А.Колесова) "105.11" сразу же по прямой шел на посадку. Таким образом его опробовали летчики-испытатели Игорь Волк, Валерий Меницкий и Александр Федотов. Последний 11 октября 1976 г. осуществил еще и короткий перелет с одной грунтовой полосы аэродрома на другую. Дальнейшие испытания предусматривали полеты "105.11" под фюзеляжем переоборудованного бомбардировщика Ту-95К. Успешные полеты позволили перейти к сбросу "105.11" с самолета-носителя, и в 1977-78 годах аналог совершил 6 испытательных полётов с планированием на ВПП после отцепки от Ту-95К на высоте около 5500 метров. Первый полет выполнил Авиард Фастовец 27 октября 1977 г., в дальнейшем к нему присоединились летчики-испытатели Петр Остапенко и Василий Урядов.

В испытательных полетах были полностью проверены аэродинамические характеристики, устойчивость и управляемость, эффективность выбранных органов управления. После прекращения полетов дозвуковой аналог "105.11" передан в качестве экспоната в музей ВВС в подмосковном Монино, где каждый его может увидеть и сегодня.


Дозвуковой аналог 105.11 в Музее авиации в Монино
Первый запуск в космос БОРа-2 состоялся 6 декабря 1969 года Беспилотный орбитальный ракетоплан БОР-3 в стартовой конфигурации с максимально сложенными консолями крыла перед пуском по суборбитальной траектории, состоявшемся 11июля 1974

Для подтверждения методик перерасчета результатов трубных испытаний масштабных моделей "105.12" и "105.13" на натурные условия, а также для выполнения комплексных испытаний различных типов теплозащиты (включая кварцевую) и подтверждения правильности тепловых расчетов, были проведены летные испытания моделей ОС в масштабах от 1:5 до 1:2 ("Бор-2, 3") и в масштабе 1:3 ("Бор-4"), которые также подтвердили соответствие результатов испытаний расчетным при одновременном воздействии реальных аэродинамических, тепловых, акустических и вибрационных нагрузок.


БОР-4 перед полётом. Хорошо видны элементы термозащиты

"Бор-4" представлял собой беспилотный экспериментальный аппарат длиной 3.4 м, размахом крыла 2.6 м и массой 1074 кг на орбите и 795 кг после возвращения. Он был оснащен комплексом измерительной аппаратуры, системой управления с использованием реактивных двигателей и отклоняемых аэродинамических поверхностей. В период с 1982-84 г.г. было произведено 6 запусков аппаратов "Бор-4" ракетами-носителями "Космос" с космодрома Капустин-Яр на различные траектории. Аппараты, выводившиеся на орбиты ИСЗ, получали наименования спутников серии "Космос".


BОР-4С в дальнейшем использовался для испытания термозащиты ОК "Буран"

В каждом запуске аппарат после орбитального полета совершал ориентированный и управляемый вход в атмосферу с управлением на этапе спуска газодинамическими органами, формировавшими выбранную траекторию. Тем самым при осуществлении стабилизации по курсу и тангажу проводились контролируемые повороты по крену в поточных осях для прогнозирования попадания на заданную дальность с непревышением расчетных тепловых потоков и перегрузок на всех этапах спуска.


БОР-4 во время спасательной операции


Второй БОР-4 под обозначением "Космос-1445" приводнился 15 марта 1983 года в районе Кокосовых островов

БОР-4 приводнялся недалеко от побережья Австралии. В этих дальних водах специально дежурили наши боевые корабли, оборудованные средствами спасения и транспортировки орбитального самолёта. За всеми этими непростыми и ответственными манипуляциями напряжённо и с интересом наблюдали наши противники. При малейшем сбое и просчёте с регионом приводнения аппарат вне всякого сомнения был бы захвачен нашими противниками.

Укладывание БОРа-4 на палубу судна. На заднем плане - человек в костюме химической защиты и в противогазе Заключительные операции по фиксации БОРа-4 на палубе. Баллон-пеленг демонтирован


Один из слетавших аппаратов БОР-4, подготовленный к повторному несостоявшемуся полету

ВКС Бор-4 на ракете-носителе

Впоследствии, по отработанной на аппарате "Бор-4" методике с космодрома Капустин Яр в сторону полигона в Сары Шаган (Казахстан) было проведено 6 суборбитальных запусков (1983-88гг.) аппаратов "Бор-5", представлявших собой масштабную модель (М1:8) орбитального корабля "Буран" массой порядка 1.4 т, и использовавшихся для исследований аэродинамических характеристик и условий входа в атмосферу.

Полная драматизма история закрытия программы "Спираль", на которую было затрачено более 75 миллионов рублей (и которая практически по всем параметрам превосходила своего американского конкурента - ВКС "Dyna Soar") - тема для отдельного рассказа.

Однако к тому времени руководство страны утратило интерес к теме «Спираль» и бросило все силы на соперничество с американцами в лунной гонке. «Заниматься фантазиями мы не будем», - заявил, ознакомившись со «Спиралью», министр обороны маршал Андрей Гречко, и работы по этой теме стали свертывать.

«Спирали» так и не дали превратиться в реальность. Лозино-Лозинскому, конечно же, очень трудно было пережить такой удар. Однако даже это не могло заставить его взять творческую паузу.

Это было для вас большим потрясением? - спросили у Глеба Евгеньевича :

Еще бы… Мы тогда обращались за помощью к Мстиславу Всеволодовичу Келдышу, но и ему не удалось нас поддержать. Однако работа над «Спиралью» все же продолжалась, хотя теперь программа была переориентирована на летные испытания самолетов-аналогов. Создание же АКС «Спираль» отодвигалось на далекое и крайне неопределенное будущее…

Созданный задел и приобретенный опыт работы над "Спиралью" в дальнейшем значительно облегчил и ускорил создание многоразового космического корабля "Буран".


Американский конкурент - ВКС "Dyna Soar"

В 1971 г. Г.Е.Лозино-Лозинский назначается Главным конструктором сверхзвукового перехватчика, который впоследствии весь мир узнал как МиГ-31.

Самолет предназначен для использования в системе ПВО страны, способен выполнять длительное патрулирование и вести борьбу со всеми классами воздушных целей (в том числе малоразмерными крылатыми ракетами, вертолетами и высотными скоростными самолетами) в любое время суток, в сложных погодных условиях, при интенсивном ведении радио-электронной борьбы. К началу 1992 г. на вооружении войск ПВО стран СНГ находилось более 200 истребителей-перехватчиков МиГ-31 (еще 24 самолета поставлены Китаю). МиГ-31 являлся первым в мире серийным истребителем с фазированной антенной решеткой (ФАР импульсно-доплеровской РЛС СБИ-16 "Заслон") большой мощности. Группа из четырех взаимодействующих самолетов МиГ-31 способна полностью контролировать воздушное пространство протяженностью по фронту 800-900 км.

Г.Е.Лозино-Лозинский принимал самое непосредственное участие и в создании фронтового истребителя МиГ-29: в частности, в 1972 г. на заседании объединенного Научно-технического совета Министерства авиационной промышленности и ВВС, на котором рассматривалось состояние работ по перспективным истребителям в рамках государственной программы ПФИ, от имени ММЗ "Зенит" им.А.И.Микояна именно Глеб Евгеньевич в докладе представил проект истребителя, впоследствии получившего наименование МиГ-29. К началу 1993 г. было выпущено более 1000 самолетов, признанных одним из лучших истребителей четвертого поколения.

В наше время МиГ-29 состоит на вооружении более 20 стран, причем из-за своих уникальных характеристик он является единственной системой оружия, оставленной на вооружении объединенной Германии, члена NATO.

"...для меня два витка орбитального полета протекали как-то спокойно - пока корабль в космосе, особых тревог не должно быть. Но, естественно, уже с момента подачи команды на торможение, это происходило за 22000 километров до точки посадки в Байконуре, началось большое напряженное внимание - "как будет проходить полет по траектории движения в атмосфере?". Вот чуть западнее африканского побережья, на расстоянии более 8000 км от точки посадки, начался атмосферный участок спуска корабля. На высоте 100 км корабль вошел в атмосферу. Если до сих пор мы аккуратно получали информацию о том, где находится корабль и как протекает полет, то после входа в плотные слои атмосферы из-за сильного нагрева атмосферы корабль был окружен плазмой, экранирующей любую радиосвязь. Поэтому мы в течение 20 минут с напряжением ждали, когда же корабль затормозится до такой скорости, при которой опять появится радиосвязь, и мы сможем узнать, как же он прошел самый ответственный участок пути. На этом участке траектории корабль преодолел температурный барьер, передние кромки крыла нагрелись до температуры более 1500°С и светились так ярко, что корабль можно было бы видеть с земли как светящийся движущийся предмет. Нижняя поверхность нагревалась до температуры примерно 1250°С. Зная это, мы понимали, что сдаем экзамен на доказательство того, в какой мере нам удалось решить все задачи, связанные с такими условиями полета корабля.

Но вот прошли двадцать минут, и было получено известие, что примерно в заданной точке пространства на высоте 50 км корабль появился, а раз появился - значит все прошло более или менее удовлетворительно. Мы поняли, что первый, наиболее серьезный экзамен как будто бы сдали неплохо. Еще нельзя было сказать, хорошо ли, но что неплохо, уже было ясно.

Дальше начался следующий важный участок полета, заставивший нас поволноваться. Этот участок должен заканчиваться посадкой в заданной точке взлетно-посадочной полосы. Траектория спуска в атмосфере выбиралась таким образом, чтобы корабль затормозился от 27000 до 300 км/ч, то есть до скорости, с которой он должен был коснуться колесами поверхности аэродрома. В процессе спуска решались две основные задачи: гашения до заданной величины огромной начальной скорости полета орбитального корабля и точного его приведения в точку с заданными координатами и с заданным направлением вектора скорости.

Первую информацию о состоянии корабля мы получили уже на этом участке с самолета МиГ-25, который встретил наш корабль на высоте чуть больше 10 км и летчик сообщил, что внешне вроде все в порядке. На душе стало легче, полет продолжался успешно, и это подкрепляло нашу уверенность, что и дальше все будет хорошо. Участок траектории при заходе на посадку заставил поволноваться летчика самолета сопровождения, так как, прилетев (в связи с восточным ветром) с запада, наш орбитальный корабль должен был, как ожидал летчик, развернуться на полосу, но вместо этого он развернулся на 90 градусов и начал вроде бы уходить в сторону. Но корабль наш был умница: он делал так, как это ему требовалось в сложившихся условиях полета - он немножко удлинил траекторию движения, чтобы рассеять избыток энергии и обеспечить заданную скорость 300 км/ч в момент касания поверхности аэродрома.

Ну а эффект, который произвела на всех нас безукоризненная автоматическая посадка, сложно передать: трудно переоценить значение этого события, которое мы наблюдали, испытывая большое эмоциональное волнение. Эта посадка показала, что огромная выполненная работа с первого раза увенчалась успехом - вы ведь знаете, что далеко не всегда первые космические творения так легко и просто обеспечивают успех в первом полете."

25.12.2009

Авиаконструктор Глеб Евгеньевич Лозино-Лозинский родился в городе Киеве (Украина) 25 декабря 1909 года. Его отец, дворянин по происхождению, был присяжным поверенным.

Глеб Лозино-Лозинский окончил профтехшколу, где получил специальность слесаря, затем в 1930 году – Харьковский механико-машиностроительный институт по специальности "паротехника".

Трудовую деятельность начал в 1930 году инженером-расчетчиком на Харьковском турбогенераторном заводе. Принимал участие в проработке проекта первой отечественной паровой конденсационной турбины большой мощности, разработал новую методику расчета турбин. Одновременно он преподавал на курсах для квалифицированных рабочих.

С 1932 по 1940 год Лозино-Лозинский работал в Харьковском механико-машиностроительном институте над проектом паротурбинной установки для тяжелого бомбардировщика Андрея Туполева.

Эта работа была продолжена в Ленинградском котлотурбинном институте.

В феврале 1941 года Лозино-Лозинский перешел на работу в Киевский авиационный институт, а в июле того же года эвакуировался в Куйбышев.

Осенью 1941 года он был переведен в Конструкторское бюро Артема Микояна (КБ А.И. Микояна), где работал до 1976 года, с 1965 года был главным конструктором.

В КБ занимался проектами различных вариантов реактивных газотурбинных двигателей, разрабатывал двухступенчатую авиационно-космическую систему "Спираль". Автор проектов перехватчика МиГ–31 и фронтового истребителя МиГ–29. Участвовал в организации серийного производства семейства самолетов МиГ – от МиГ–9 до МиГ–31.

С 1976 по 1994 год Глеб Лозино-Лозинский был генеральным директором, главным конструктором Научно-производственного объединения (НПО) "Молния", который занимался разработкой планера орбитального корабля "Буран". В результате многолетней напряженной работы был создан многоразовый космический корабль с уникальными характеристиками. Первый и единственный полет "Бурана" состоялся 15 ноября 1988 года.

Помимо "Бурана", возглавляемое Лозино-Лозинским НПО создало космические аппараты "Бор–4" и "Бор–5", разработало проекты многоцелевой авиационно-космическая системы МАКС на базе самолета-носителя Ан–225 ("Мрия") и ряд самолетов "триплан" – от самолета–такси "Молния–1" до сверхтяжелого самолета "Геракл".

В 1994 году Глеб Лозино-Лозинский оставил пост Генерального директора НПО "Молния", но остался Генеральным конструктором НПО "Молния", сосредоточившись на конструкторской работе.

Лозино-Лозинский был одним из основателей Российской инженерной академии, в которой он возглавлял секцию "Авиакосмическая", являлся научным редактором журнала "Авиакосмическая техника и технология", организатором регулярно проводимого в Москве Международного аэрокосмического конгресса, заведующим кафедрой "Авиационно-космические системы" в МГТУ им. К.Э.Циолковского, автором многих книг и научных статей.

Глеб Лозино-Лозинский – доктор технических наук, был профессором Московского авиационного института, лауреат Ленинской премии (1962), Государственных премий СССР (1950, 1952).

За заслуги он был удостоен звания Героя Социалистического Труда, награжден двумя орденами Ленина, орденами Трудового Красного Знамени, Красной Звезды, Октябрьской революции, "За заслуги перед Отечеством" IV степени, медалями.

В знак признания большого вклада Глеба Лозино-Лозинского в развитие мировой аэрокосмической науки и техники Германским обществом аэронавтики и астронавтики ему были присуждены престижные международные премии имени Зенгера и Вернера фон Брауна.

Перейдя в 1941 году на работу в ОКБ А.И.Микояна, Г.Е.Лозино-Лозинский занялся разработкой проектов различных вариантов реактивных газотурбинных двигателей. Энергетика самолетов стала основным его интересом на долгие годы.


Г.Е.Лозино-Лозинский родился 25 декабря 1909 года в Киеве (Украина). Свой творческий путь он начал на Харьковском турбогенераторном заводе, где работал инженером-масчетчиком после окончания в 1930 году Харьковского механико-машиностроительного института. Первой серьезной работой стало участие в проработке проекта первой отечественной паровой конденсационной турбины большой мощности.

С 1932 года Г.Е.Лозино-Лозинский работает в авиационной промышленности, разрабатывая в Харьковском авиационном институте паротурбинную двигательную установку для тяжелого бомбардировщика А.Н.Туполева.

Главной проблемой, с которой столкнулись конструкторы в 40-х годах при увеличении скоростей полета, стала неэффективность воздушного винта как основного движителя самолета. Дальнейший прирост максимальных скоростей достигался непропорциональным увеличением мощности поршневого двигателя и прогрессирующими весовыми издержками. Это был тупик, из которого конструкторы лихорадочно искали выход: испытывались комбинированные двигательные установки, пороховые ускорители, появились первые самолеты с жидкостными ракетными двигателями (ЖРД). Предлагаемые технические решения позволяли получить кратковременный выигрыш в скорости за счет существенного снижения эффективности. Это был передний край инженерных изысканий, и именно здесь впервые проявился инженерный талант Г.Е.Лозино-Лозинского.

Перейдя в 1941 году на работу в ОКБ А.И.Микояна, Г.Е.Лозино-Лозинский занялся разработкой проектов различных вариантов реактивных газотурбинных двигателей. Энергетика самолетов стала основным его интересом на долгие годы. Под руководством и при непосредственном участии Г.Е.Лозино-Лозинского проходило освоение силовых установок нового типа, в том числе комбинированных (поршневой двигатель+воздушно-реактивный двигатель, ПД+ВРД). Первая отечественная форсажная камера (и методы ее расчета) была разработана именно для поршневого двигателя (форсажная камера располагалась в системе охлаждения радиатора с помощью вентиляторов), существенно улучшив его скоростные характеристики: в 1947 году в горизонтальном полете на опытном поршневом самолете была достигнута скорость 850 км/ч. Серьезные проблемы были решены при создании и отработке систем регулирования форсажной камеры. Таким образом, к моменту появления первых пригодных для установки на самолет турбореактивных двигателей (ТРД) у нас уже была отработанная форсажная камера. Опережающая разработка позволила начать штурм звукового барьера сразу же с освоением ТРД.

Затраченные усилия не прошли даром: на серийном истребителе МиГ-15 впервые в СССР 18 октября 1949 года летчиком Д.М.Тютеревым была достигнута скорость звука в пологом пикировании (всего построено 15560 самолетов 19 модификаций), а на МиГ-17 в феврале 1950 года - уже и в горизонтальном полете (М=1,03). МиГ-17 был оснащен первой в нашей стране серийной форсажной камерой, разработанной под руководством Г.Е.Лозино-Лозинского в сотрудничестве с ЦИАМ, увеличивавшей тягу двигателя на 30%. Эта форсажная камера имела регулируемое критическое сечение и была первой камерой такого типа в мире. Продолжительность работы форсажной камеры ограничивалась 3 мин на высотах до 7000 м и 10 мин на больших высотах. Общее число построенных истребителей МиГ-17 в 14 модификациях превысило 11000 машин.

После достижения рекордных показателей на первое место вышла задача создания высокоэффективного серийного истребителя. Г.Е.Лозино-Лозинский возглавил в ОКБ В.И.Микояна работы по комплексному сопряжению двигателя с воздухозаборником и форсажной камерой с целью повышения эффективности всей силовой установки. Результатом стал МиГ-19 - первый в мире серийный сверхзвуковой истребитель. Его заменил лучший истребитель своего времени МиГ-21 с максимальной скоростью 2 М, оснащенный лобовым регулируемым сверхзвуковым воздухозаборником. Самолет имел систему высотного коррелятора приемистости, служившую для поддержания оптимальных характеристик разгона двигателя на больших высотах. Система управления воздухозаборником вводила коррекции выдвижного конуса по углам отклонения стабилизатора в зависимости от углов атаки. На счету модификации МиГ-21 - Е-66 два абсолютных мировых рекорда скорости горизонтального полета в 1959-1960 годах и абсолютный мировой рекорд высоты в 1961 году.

С дальнейшим ростом скоростей и высоты полетов авиация вышла на порог космоса. В начале 1960-х годов в США строится и начинает первые полеты экспериментальный ракетоплан "Х-15" (в ходе испытательных полетов достигнуты скорость М=6,72 и максимальная высота 107906 м). В соответствии с пятилетним Тематическим планом ВВС по орбитальным и гиперзвуковым самолетам практические работы по крылатой космонавтике в нашей стране в 1965 году были поручены ОКБ-155 А.И.Микояна, где их возглавил 55-летний Главный конструктор ОКБ Г.Е.Лозино-Лозинский. Тема по созданию двухступенчатой воздушно-космической системы (ВКС) получила индекс "Спираль".

В соответствиями с требованиями заказчика конструкторам поручалась разработка ВКС, состоящей из гиперзвукового самолета-разгонщика (ГСР) и орбитального самолета (ОС) с ракетным ускорителем. Старт системы - горизонтальный, с использованием разгонной тележки. После набора скорости и высоты с помощью двигателей ГСР происходило отделение ОС и набор скорости с помощью ракетных двигателей двухступенчатого ускорителя. Боевой пилотируемый одноместный ОС многоразового применения предусматривал испльзование в вариантах разведчика, перехватчика или ударного самолета с ракетой класса "Орбита-Земля" и мог применяться для инспекции космических объектов. Диапазон опорных орбит составлял 130-150 км высоты и 45 -135 градусов наклонения, задача полета должна была выполняться в течении 2-3 витков. Маневренные возможности ОС с использованием бортовой ракетной двигательной установки должны обеспечивать изменение наклонения орбиты на 17 градусов (ударный самолет с ракетой на борту - 7 градусов) или изменение наклона орбиты на 12 градусов с подъемом на высоту до 1000 км. После выполнения орбитального полета ОС должен входить в атмосферу с большим углом атаки (45 - 65 градусов), управление предусматривалось изменением крена при постоянном угле атаки. На траектории планирующего спуска в атмосфере задавалась способность совершения аэродинамического маневра по дальности 4000...6000 км с боковым отклонением +/- 1100...1500 км. В район посадки ОС выводится с выбором вектора скорости вдоль оси взлетно-посадочной полосы, что достигается выбором программы изменения крена, и совершает посадку с применением турбореактивного двигателя на грунтовой аэродром II класса со скоростью посадки 250 км/ч.

Согласно утвержденному Г.Е.Лозино-Лозинским 29 июня 1966 года аванпроекту "Спирали", ВКС с расчетной массой 115 тонн представляла собой состыкованные воедино крылатые широкофюзеляжные многоразовые аппараты горизонтального взлета-посадки, спроектированные по схеме "несущий корпус-бесхвостка": 52-тонный (длина 38 м, размах 16,5 м) гиперзвуковой самолет-разгонщик (индекс "50-50") до скорости 6 М и отделяемый от него, стартующий с его "спины" на высоте 28-30 км 10-тонный пилотируемый ОС длиной 8 м и размахом крыла 7,4 м; на консоли крыла приходилось лишь 3,4 м, а остальная, большая часть несущей поверхности соотносилась с шириной фюзеляжа. К ОС стыковался блок выведения, состоящий из топливного бака, в котором размещались основные компоненты кислород-керосин, и двух одноразовых ЖРД с тягой каждого около 100 тонн (Генерального конструктора В.П.Глушко). Блок выведения после вывода ОС в намеченную точку отделялся и падал в мировой океан. Диапазон высот рабочих орбит изменялся от минимальных, порядка 150-200 км, до максимальных 500-600 км; направление азимута запуска в связи с наличием ГСР определялось конкретным целевым назначением полета и в зависимости от точки старта могло варьироваться в пределах от 0 до 97 градусов.

К сожалению, проект "Спираль" так и не удалось довести до конца. Решением правительства работы были прекращены.

В 1971 году Г.Е.Лозино-Лозинский назначается Главным конструктором сверхзвукового перехватчика, который впоследствии весь мир узнал как МиГ-31. Самолет предназначен для использования в системе ПВО страны, способен выполнять длительное патрулирование и вести борьбу со всеми классами воздушных целей (в том числе малоразмерными крылатыми ракетами, вертолетами и высотными скоростными самолетами) в любое время суток, в сложных погодных условиях, при интенсивном ведении радио-электронной борьбы. К началу 1992 года на вооружении войск ПВО стран СНГ находилось более 200 истребителей-перехватчиков МиГ-31 (еще 24 самолета поставлены Китаю). МиГ-31 является первым (и до сегодняшнего дня единственным) в мире серийным истребителем с фазированной антенной решеткой (ФАР импульсно-доплеровской РЛС СБИ-16 "Заслон") большой мощности. Группа из четырех взаимодействующих самолетов МиГ-31 способна полностью контролировать воздушное пространство протяженностью по фронту 800-900 км.

Г.Е.Лозино-Лозинский принимал самое непосредственное участие и в создании фронтового истребителя МиГ-29: в частности, в 1972 г. на заседании объединенного Научно-технического совета Министерства авиационной промышленности и ВВС, на котором рассматривалось состояние работ по перспективным истребителям в рамках государственной программы ПФИ, от имени ММЗ "Зенит" им.А.И.Микояна именно Глеб Евгеньевич в докладе представил проект истребителя, впоследствии получившего наименование МиГ-29. К началу 1993 г. было выпущено более 1000 самолетов, признанных одним из лучших истребителей четвертого поколения. Сегодня МиГ-29 состоит на вооружении более 20 стран, причем из-за своих уникальных характеристик он является единственной системой оружия, оставленной на вооружении объединенной Германии, члена NATO.

В 1972 году в США официально начинаются работы по проекту многоразового транспортного космического корабля (МТКК) "Space Shuttle". Причем изначально весь проект имеет четко выраженную военную направленность. В этих условиях руководство СССР начинает думать о создании аналогичной отечественной системы: работы по тяжелой транспортно-космической системе с многоразовым орбитальным кораблем начинаются в 1974 году после назначения В.П.Глушко на пост главного конструктора НПО "Энергия" в инициативном порядке в рамках комплексной ракетно-космической программы, предусматривающей разработку средств выведения для развертывания и обеспечения лунной базы. Но глобальное противостояние СССР и США определяет свои приоритеты, и от комплексной ракетно-космической программы остается только многоразовый орбитальный корабль. Однако все понимают, что крылатый космический корабль невозможно сделать без Минавиапрома только силами и средствами Минобщемаша, а среди авиаторов сделать это может только Г.Е.Лозино-Лозинский с его уникальным опытом работы над "Спиралью".

12 февраля 1976 г. выходит закрытое Постановление Правительства СССР № 132-51 "О создании многоразовой космической системы в составе разгонной ступени, орбитального самолета, межорбитального буксира-корабля, комплекса управления системой, стартово-посадочного и ремонтно-восстановительного комплексов и других наземных средств, обеспечивающих выведение на северо-восточные орбиты высотой 200 км полезных грузов массой до 30 т и возвращения с орбиты грузов массой до 20 т¦" Впоследствии эта многоразовая космическая система получила названия "Энергия-Буран". Этот же документ открывал финансирование и определял основного заказчика (Министерство обороны СССР) и головного разработчика (НПО "Энергия"). В рамках этого Постановления головным предприятием в авиационной промышленности, ответственным за создание планера орбитального корабля и координацию работ всей кооперации авиационной промышленности, определялось специально соданное Научно-производственное объединение "Молния" во главе с Генеральным директором - Главным конструктором Глебом Евгеньевичем Лозино-Лозинским.

Несмотря на предложение НПО "Молния" применить схему орбитального самолёта "Спираль" в системе "Буран", головной разработчик системы НПО "Энергия" настоял на использовании компоновки, близкой к американскому "Шаттлу". Тем не менее, опыт работы над "Спиралью" значительно облегчил и ускорил создание "Бурана". В отечественной практике ракетно-космической техники не было аналогов, по сложности равных кораблю "Буран": в состав ОК входило более 600 установочных единиц бортовой аппаратуры, скомплексированных в более чем 50 бортовых систем, объединенных в единый бортовой комплекс; более 1500 трубопроводов, более 2500 сборок (жгутов) кабельной сети, включающих около 15000 электрических соединителей.

В результате многолетней напряженной работы создан многоразовый космический корабль с уникальными характеристиками. Первый и единственный его полет состоялся 15 ноября 1988 года.

Еще в конце 80-х годов, Г.Е.Лозино-Лозинский вместе с группой единомышленников начинает разрабатывать многоразовую авиационно-космическую систему МАКС с использованием в качестве "летающего космодрома" сверхтяжелого транспортного самолета Ан-225 "Мрiя".

Г.Е.Лозино-Лозинский был одним из основателей Российской инженерной академии, в он которой возглавляет секцию "Авиакосмическая", являлся научным редактором журнала "Авиакосмическая техника и технология", организатором регулярно проводимого в Москве Международного аэрокосмического конгресса, заведушим кафедрой "Авиационно-космические системы" в МГТУ им.К.Э.Циолковского. Заслуги Глеба Евгеньевича высоко оценены двумя орденами Ленина, орденами Трудового Красного Знамени, Красной Звезды, Октябрьской революции, высшим орденом РФ "За заслуги перед Отечеством" IV степени, многими медалями. В знак признания большого вклада Г.Е.Лозино-Лозинского в развитие мировой аэрокосмической науки и техники Германским обществом аэронавтики и астронавтики ему была присуждены престижные международные премии имени Зенгера и В.фон-Брауна.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Полезные свойства груздей для человека Полезные свойства груздей для человека Бездрожжевые медовые булочки с корицей Бездрожжевые медовые булочки с корицей Сон во сне: что означает такое сновидение Сон во сне: что означает такое сновидение