Численное решение обыкновенных дифференциальных уравнений. Численное решение дифференциальных уравнений (1) Численные методы решения нелинейных дифференциальных уравнений

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Рассматриваем только решение задачи Коши. Система дифференциальных уравнений или одно уравнение должны быть преобразованы к виду

где ,
n -мерные векторы; y – неизвестная вектор-функция; x – независимый аргумент,
. В частности, еслиn = 1, то система превращается в одно дифференциальное уравнение. Начальные условия задаются следующим образом:
, где
.

Если
в окрестности точки
непрерывна и имеет непрерывные частные производные поy , то теорема существования и единственности гарантирует, что существует и при том только одна непрерывная вектор-функция
, определенная внекоторой окрестности точки , удовлетворяющая уравнению (7) и условию
.

Обратим внимание на то, что окрестность точки , где определено решение, может быть весьма малой. При подходе к границе этой окрестности решение может уходить в бесконечность, колебаться, с неограниченно увеличивающейся частотой, в общем, вести себя настолько плохо, что оно не может быть продолжено за границу окрестности. Соответственно, такое решение не может быть отслежено численными методами на большем отрезке, если таковой задан в условии задачи.

Решением задачи Коши на [a ; b ] является функция. В численных методах функция заменяется таблицей (табл. 1) .

Таблица 1

Здесь
,
. Расстояние между соседними узлами таблицы, как правило, берется постоянным:
,
.

Бывают таблицы и с переменным шагом. Шаг таблицы определяется требованиями инженерной задачи и не связан с точностью нахождения решения.

Еслиy – вектор, то таблица значений решения примет вид табл. 2.

Таблица2

В системе MATHCAD вместо таблицы используется матрица, причем она является транспонированной по отношению к указанной таблице.

Решить задачу Коши с точностью ε означает получить в указанной таблице значения (числа или векторы),
, такие, что
, где
– точное решение. Возможен вариант, когда решение на отрезок, заданный в задаче, не продолжается. Тогда нужно ответить, что на всем отрезке задача не может быть решена, и нужно получить решение на отрезке, где оно существует, сделав этот отрезок по возможности больше.

Следует помнить, что точное решение
нам не известно (иначе зачем применять численный метод?). Оценка
должна быть обоснована из каких-то других соображений. Как правило, стопроцентной гарантии, что оценка выполняется, получить не удается. Поэтому используются алгоритмы оценки величины
, которые оказываются эффективными в большинстве инженерных задач.

Общий принцип решения задачи Коши следующий. Отрезок [a ; b ] разбивается на ряд отрезков узлами интегрирования . Число узловk не обязано совпадать с числом узлов m итоговой таблицы значений решений (табл.1,2). Как правило, k > m . Для простоты расстояние между узлами будем считать постоянным,
;h называется шагом интегрирования. Затем, по определенным алгоритмам, зная значения приi < s , вычисляем значение . Чем меньше шагh , тем меньше значение будет отличаться от значения точного решения
. Шагh в этом разбиении уже определяется не по требованиям инженерной задачи, а по требуемой точности решения задачи Коши. Кроме того, он должен выбираться так, чтобы на одном шаге табл. 1, 2 укладывалось целое число шагов h . В этом случае значения y , полученные в результате счета с шагом h в точках
, используются соответственно в табл. 1 или 2.

Простейшим алгоритмом решения задачи Коши для уравнения (7) является метод Эйлера. Формула расчета такова:

(8)

Посмотрим, как оценивается точность находимого решения. Предположим, что
– точное решение задачи Коши, а также, что
, хотя это почти всегда не так. Тогда, где константаC зависит от функции
в окрестности точки
. Таким образом, на одном шаге интегрирования (нахождения решения) мы получаем ошибку порядка. Так как шагов приходится сделать
, то естественно ожидать, что суммарная ошибка в последней точке
будет порядка
, т.е. порядкаh . Поэтому метод Эйлера называют методом первого порядка, т.е. ошибка имеет порядок первой степени шага h . В действительности же на одном шаге интегрирования можно обосновать следующую оценку. Пусть
– точное решение задачи Коши с начальным условием
. Ясно, что
не совпадает с искомым точным решением
исходной задачи Коши уравнения (7). Однако при малыхh и «хорошей» функции
эти два точных решения будут отличаться мало. Формула остаточного члена формулы Тейлора гарантирует, что
, это и дает ошибку шага интегрирования. Итоговая ошибка складывается не только из ошибок на каждом шаге интегрирования, но и из отклонений искомого точного решения
от точных решений
,
, причем эти отклонения могут становиться очень большими. Однако итоговая оценка ошибки в методе Эйлера при «хорошей» функции
все равно имеет вид
,
.

При применении метода Эйлера счет идет следующим образом. По заданной точности ε определяем ориентировочно шаг
. Определяем число шагов
и снова ориентировочно выбираем шаг
. Затем опять корректируем его в сторону уменьшения, чтобы на каждом шаге табл. 1 или 2 укладывалось целое число шагов интегрирования. Получаем шагh . По формуле (8), зная и, находим. По найденному значениюи
находими так далее.

Полученный результат может не иметь желаемой точности, и, как правило, не будет ее иметь. Поэтому уменьшаем шаг в два раза и снова применяем метод Эйлера. Сравниваем результаты первого применения метода и второго в одинаковых точках . Если все расхождения меньше заданной точности, то можно считать последний результат счета ответом к задаче. Если нет, то шаг снова уменьшаем вдвое и еще раз применяем метод Эйлера. Теперь сравниваем результаты последнего и предпоследнего применения метода и т.д.

Метод Эйлера применяется сравнительно редко из-за того, что для достижения заданной точности ε требуется выполнить большое число шагов, имеющее порядок
. Однако если
имеет разрывы или разрывные производные, то методы более высоких порядков будут давать такую же ошибку, как и метод Эйлера. То есть потребуется такой же объем вычислений, как и в методе Эйлера.

Из методов более высоких порядков чаще других используется метод Рунге – Кутты четвертого порядка. В нем вычисления ведутся по формулам

Этот метод при наличии непрерывных четвертых производных у функции
дает ошибку на одном шаге порядка, т.е. в обозначениях, введенных выше,
. В целом на отрезке интегрирования при условии, что точное решение определено на этом отрезке, ошибка интегрирования будет иметь порядок.

Выбор шага интегрирования происходит так же, как было описано в методе Эйлера, за исключением того, что первоначально ориентировочное значение шага выбирается из соотношения
, т.е.
.

В большей части программ, применяемых для решения дифференциальных уравнений, используется автоматический выбор шага. Суть его такова. Пусть уже вычислено значение . Вычисляется значение
с шагомh , выбранном при вычислении . Затем выполняются два шага интегрирования с шагом, т.е. добавляется лишний узел
в середине между узламии
. Вычисляются два значения
и
в узлах
и
. Вычисляется величина
, гдеp – порядок метода. Если δ меньше точности, заданной пользователем, то полагают
. Если нет, то выбирают новый шагh равным и повторяют проверку точности. Если же при первой проверкеδ много меньше заданной точности, то делается попытка увеличить шаг. Для этого вычисляется
в узле
с шагомh из узла
и вычисляется
с шагом 2h из узла . Вычисляется величина
. Еслименьше заданной точности, то шаг 2h считается приемлемым. В этом случае назначают новый шаг
,
,
. Еслибольше точности, то шаг оставляют прежним.

Нужно учесть, что программы с автоматическим выбором шага интегрирования добиваются достижения заданной точности лишь при выполнении одного шага. Это происходит за счет точности аппроксимации решения, проходящего через точку
, т.е. аппроксимации решения
. Такие программы не учитывают, насколько решение
отличается от искомого решения
. Поэтому нет гарантии, что на всем отрезке интегрирования заданная точность будет достигнута.

Описанные методы Эйлера и Рунге – Кутты относятся к группе одношаговых методов. Это означает, что для вычисления
в точке
достаточно знать значениев узле. Естественно ожидать, что если используется больше информации о решении, учитываются несколько предыдущих его значений
,
и т.д., то новое значение
можно будет найти точнее. Такая стратегия используется в многошаговых методах. Для их описания введем обозначение
.

Представителями многошаговых методов служат методы Адамса – Башфорта:


Метод k -го порядка дает локальную погрешность порядка
или глобальную – порядка.

Указанные методы относятся к группе экстраполяционных, т.е. новое значение явно выражается через предыдущие. Другой тип – интерполяционные методы. В них на каждом шаге приходится решать нелинейное уравнение относительно нового значения . В качестве примера возьмем методы Адамса –Моултона:


Для применения этих методов в начале счета нужно знать несколько значений
(их число зависит от порядка метода). Эти значения нужно получить другими методами, например методом Рунге – Кутты с маленьким шагом (для повышения точности). Интерполяционные методы во многих случаях оказываются более устойчивыми и позволяют делать бόльшие шаги, чем экстраполяционные.

Чтобы не решать в интерполяционных методах нелинейное уравнение на каждом шаге, применяют предиктор-корректорные методы Адамса. Суть заключается в том, что сначала применяется на шаге экстраполяционный метод и полученное значение
подставляется в правую часть интерполяционного метода. Например, в методе второго порядка

Основные вопросы, рассматриваемые на лекции:

1. Постановка задачи

2. Метод Эйлера

3. Методы Рунге-Кутта

4. Многошаговые методы

5. Решение краевой задачи для линейного дифференциального уравнения 2 порядка

6. Численное решение дифференциальных уравнений в частных производных

1. Постановка задачи

Простейшим обыкновенным дифференциальным уравнением (ОДУ) является уравнение первого порядка, разрешённое относительно производной: y " = f (x, y) (1). Основная задача, связанная с этим уравнением известна как задача Коши: найти решение уравнения (1) в виде функции y (x), удовлетворяющей начальному условию: y (x0) = y0 (2).
ДУ n-ого порядка y (n) = f (x, y, y",:, y(n-1)), для которого задача Коши состоит в нахождении решения y = y(x), удовлетворяющего начальным условиям:
y (x0) = y0 , y" (x0) = y"0 , :, y(n-1)(x0) = y(n-1)0 , где y0 , y"0 , :, y(n-1)0 - заданные числа, можно свести к системе ДУ первого порядка.

· Метод Эйлера

В основе метода Эйлера лежит идея графического построения решения ДУ, однако этот же метод даёт одновременно и численную форму искомой функции. Пусть дано уравнение (1) с начальным условием (2).
Получение таблицы значений искомой функции y (x) по методу Эйлера заключается в циклическом применении формулы: , i = 0, 1, :, n. Для геометрического построения ломаной Эйлера (см. рис.) выберем полюс A(-1,0) и на оси ординат отложим отрезок PL=f(x0 , y0) (точка P - это начало координат). Очевидно, что угловой коэффициент луча AL будет равен f(x0 , y0), поэтому чтобы получить первое звено ломаной Эйлера достаточно из точки М провести прямую MM1 параллельно лучу AL до пересечения с прямой х = х1 в некоторой точке М1(х1, у1). Приняв точку М1(х1, у1) за исходную откладываем на оси Оу отрезок PN = f (x1, y1) и через точку М1 проводим прямую М1М2 | | AN до пересечения в точке М2(х2, у2) с прямой х = х2 и т.д.

Недостатки метода: малая точность, систематическое накопление ошибок.

· Методы Рунге-Кутта

Основная идея метода: вместо использования в рабочих формулах частных производных функции f (x, y) использовать лишь саму эту функцию, но на каждом шаге вычислять её значения в нескольких точках. Для этого будем искать решение уравнения (1) в виде:


Меняя α, β, r, q, будем получать различные варианты методов Рунге-Кутта.
При q=1 получаем формулу Эйлера.
При q=2 и r1=r2=½ получаем, что α, β= 1 и, следовательно, имеем формулу: , которая называется усовершенствованный метод Эйлера-Коши.
При q=2 и r1=0, r2=1 получаем, что α, β = ½ и, следовательно, имеем формулу: - второй усовершенствованный метод Эйлера-Коши.
При q=3 и q=4 также существуют целые семейства формул Рунге-Кутта. На практике они применяются наиболее часто, т.к. не наращивают ошибок.
Рассмотрим схему решения дифференциального уравнения методом Рунге-Кутта 4 порядка точности. Расчёты при использовании этого метода ведутся по формулам:

Их удобно вносить в следующую таблицу:

x y y" = f (x,y) k=h · f(x,y) Δy
x0 y0 f(x0,y0) k1(0) k1(0)
x0 + ½·h y0 + ½·k1(0) f(x0 + ½·h, y0 + ½·k1(0)) k2(0) 2k2(0)
x0 + ½·h y0 + ½·k2(0) f(x0 + ½·h, y0 + ½·k2(0)) k3(0) 2k3(0)
x0 + h y0 + k3(0) f(x0 + h, y0 + k3(0)) k4(0) k4(0)
Δy0 = Σ / 6
x1 y1 = y0 + Δy0 f(x1,y1) k1(1) k1(1)
x1 + ½·h y1 + ½·k1(1) f(x1 + ½·h, y1 + ½·k1(1)) k2(1) 2k2(1)
x1 + ½·h y1 + ½·k2(1) f(x1 + ½·h, y1 + ½·k2(1)) k3(1) 2k3(1)
x1 + h y1 + k3(1) f(x1 + h, y1 + k3(1)) k4(1) k4(1)
Δy1 = Σ / 6
x2 y2 = y1 + Δy1 и т.д. до получения всех искомых значений y

· Многошаговые методы

Рассмотренные выше методы - это так называемые методы пошагового интегрирования дифференциального уравнения. Они характерны тем, что значение решения на следующем шаге ищется с использованием решения, полученного лишь на одном предыдущем шаге. Это так называемые одношаговые методы.
Основная идея же многошаговых методов заключается в использовании при вычислении значения решения на следующем шаге нескольких предыдущих значений решения. Также эти методы носят название m-шаговых по числу m используемых для расчётов предыдущих значений решения.
В общем случае для определения приближённого решения yi+1 m-шаговые разностные схемы записываются таким образом (m 1):
Рассмотрим конкретные формулы, реализующие простейшие явный и неявный методы Адамса.

Явный метод Адамса 2 порядка (2-шаговый явный метод Адамса)

Имеем a0 = 0, m = 2.
Таким образом, - расчётные формулы явного метода Адамса 2-ого порядка.
При i = 1 имеем неизвестное y1, которое будем находить по методу Рунге-Кутта при q = 2 илиq = 4.
При i = 2, 3, : все необходимые значения известны.

Неявный метод Адамса 1 порядка

Имеем: a0 0, m = 1.
Таким образом, - расчётные формулы неявного метода Адамса 1-ого порядка.
Основная проблема неявных схем заключается в следующем: yi+1 входит и в правую и в левую часть представленного равенства, поэтому имеем уравнение для поиска значения yi+1. Данное уравнение является нелинейным и записано в форме, подходящей для итерационного решения, поэтому будем использовать метод простой итерации для его решения:
Если шаг h выбран удачно, то итерационный процесс быстро сходится.
Данный метод также не является самостартующимся. Так для вычисления y1 надо знать y1(0). Его можно найти по методу Эйлера.

Определение дифференциального уравнения Эйлера. Рассмотрены методы его решения.

Содержание

Дифференциальное уравнение Эйлера - это уравнение вида
a 0 x n y (n) + a 1 x n-1 y (n-1) + ... + a n-1 xy′ + a n y = f(x) .

В более общем виде уравнение Эйлера имеет вид:
.
Это уравнение подстановкой t = ax+b приводится к более простому виду, которое мы и будем рассматривать.

Приведение дифференциального уравнения Эйлера к уравнению с постоянными коэффициентами.

Рассмотрим уравнение Эйлера:
(1) .
Оно сводится к линейному уравнению с постоянными коэффициентами подстановкой:
x = e t .
Действительно, тогда
;
;
;

;
;
..........................

Таким образом, множители, содержащие x m , сокращаются. Остаются члены с постоянными коэффициентами. Однако на практике, для решения уравнений Эйлера, можно применять методы решения линейных ДУ с постоянными коэффициентами без использования указанной выше подстановки.

Решение однородного уравнения Эйлера

Рассмотрим однородное уравнение Эйлера:
(2) .
Ищем решение уравнения (2) в виде
.
;
;
........................
.
Подставляем в (2) и сокращаем на x k . Получаем характеристическое уравнение:
.
Решаем его и получаем n корней, которые могут быть комплексными.

Рассмотрим действительные корни. Пусть k i - кратный корень кратности m . Этим m корням соответствуют m линейно независимых решений:
.

Рассмотрим комплексные корни. Они появляются парами вместе с комплексно сопряженными. Пусть k i - кратный корень кратности m . Выразим комплексный корень k i через действительную и мнимую части:
.
Этим m корням и m комплексно сопряженным корням соответствуют 2 m линейно независимых решений:
;
;
..............................
.

После того как получены n линейно независимых решений, получаем общее решение уравнения (2):
(3) .

Примеры

Решить уравнения:


Решение примеров > > >

Решение неоднородного уравнения Эйлера

Рассмотрим неоднородное уравнение Эйлера:
.
Метод вариации постоянных (метод Лагранжа) также применим и к уравнениям Эйлера.

Сначала мы решаем однородное уравнение (2) и получаем его общее решение (3). Затем считаем постоянные функциями от переменной x . Дифференцируем (3) n - 1 раз. Получаем выражения для n - 1 производных y по x . При каждом дифференцировании члены, содержащие производные приравниваем к нулю. Так получаем n - 1 уравнений, связывающих производные . Далее находим n -ю производную y . Подставляем полученные производные в (1) и получаем n -е уравнение, связывающее производные . Из этих уравнений определяем . После чего интегрируя, получаем общее решение уравнения (1).

Пример

Решить уравнение:

Решение > > >

Неоднородное уравнение Эйлера со специальной неоднородной частью

Если неоднородная часть имеет определенный вид, то получить общее решение проще, найдя частное решение неоднородного уравнения. К такому классу относятся уравнения вида:
(4)
,
где - многочлены от степеней и , соответственно.

В этом случае проще сделать подстановку
,
и решать

Известно, что обыкновенное дифференциальное уравнение первого порядка имеет вид: .Решением этого уравнения является дифференцируемая функция, которая при подстановке в уравнение обращает его в тождество. График решения дифференциального уравнения (рис 1.) называетсяинтегральной кривой.

Производную в каждой точкеможно геометрически интерпретировать как тангенс угланаклона касательной к графику решения, проходящего через эту точку, т е.:.

Исходное уравнение определяет целое семейство решений. Чтобы выделить одно решение, задают начальное условие: , где – некоторое заданное значение аргумента, а–начальное значение функции.

Задача Коши заключается в отыскании функции , удовлетворяющей исходному уравнению и начальному условию. Обычно определяют решение задачи Коши на отрезке, расположенном справа от начального значения, т. е. для.

Даже для простых дифференциальных уравнений первого порядка не всегда удается получить аналитическое решение. Поэтому большое значение имеют численные методы решения. Численные методы позволяют определить приближенные значения искомого решения на некоторой выбранной сетке значений аргумента. Точкиназываютсяузлами сетки , а величина – шагом сетки. Часто рассматриваютравномерные сетки, для которых шаг постоянен,. При этом решение получается в виде таблицы, в которой каждому узлу сеткисоответствуют приближенные значения функциив узлах сетки.

Численные методы не позволяют найти решение в общем виде, зато они применимы к широкому классу дифференциальных уравнений.

Сходимость численных методов решения задачи Коши. Пусть – решение задачи Коши. Назовем погрешностью численного метода функцию , заданную в узлах сетки. В качестве абсолютной погрешности примем величину.

Численный метод решения задачи Коши называется сходящимся , если для него при. Говорят, что метод имеет-ый порядок точности, если для погрешности справедлива оценка,константа, .

Метод Эйлера

Простейшим методом решения задачи Коши является метод Эйлера. Будем решать задачу Коши

на отрезке . Выберем шаги построим сетку с системой узлов. В методе Эйлера вычисляются приближенные значения функциив узлах сетки:. Заменив производнуюконечными разностями на отрезках,, получим приближенное равенство:,, которое можно переписать так:,.

Эти формулы и начальное условие являются расчетными формулами метода Эйлера.

Геометрическая интерпретация одного шага метода Эйлера заключается в том, что решение на отрезке заменяется касательной, проведенной в точкек интегральной кривой, проходящей через эту точку. После выполненияшагов неизвестная интегральная кривая заменяется ломаной линией(ломаной Эйлера).

Оценка погрешности. Для оценки погрешности метода Эйлера воспользуемся следующей теоремой.

Теорема. Пусть функция удовлетворяет условиям:

.

Тогда для метода Эйлера справедлива следующая оценка погрешности: , где– длина отрезка. Мы видим, что метод Эйлера имеет первый порядок точности.

Оценка погрешности метода Эйлера часто бывает затруднительна, так как требует вычисления производных функции . Грубую оценку погрешности даетправило Рунге (правило двойного пересчета), которое используется для различных одношаговых методов, имеющих -ый порядок точности. Правило Рунге заключается в следующем. Пусть– приближения, полученные с шагом, а– приближения, полученные с шагом. Тогда справедливо приближенное равенство:

.

Таким образом, чтобы оценить погрешность одношагового метода с шагом , нужно найти то же решение с шагоми вычислить величину, стоящую справа в последней формуле, т.е.. Так как метод Эйлера имеет первый порядок точности, т. е., то приближенное равенство имеет вид:.

Используя правило Рунге, можно построить процедуру приближенного вычисления решения задачи Коши с заданной точностью . Для этого нужно, начав вычисления с некоторого значения шага , последовательно уменьшать это значение в два раза, каждый раз вычисляя приближенное значение,. Вычисления прекращаются тогда, когда будет выполнено условие: . Для метода Эйлера это условие примет вид:. Приближенным решением будут значения,.

Пример 1. Найдем решение на отрезке следующей задачи Коши:,. Возьмем шаг. Тогда.

Расчетная формула метода Эйлера имеет вид:

, .

Решение представим в виде таблицы 1:

Таблица 1

Исходное уравнение есть уравнение Бернулли. Его решение можно найти в явном виде: .

Для сравнения точного и приближенного решений представим точное решение в виде таблицы 2:

Таблица 2

Из таблицы видно, что погрешность составляет

Обыкновенными дифференциальными уравнениями называются такие уравнения, которые содержат одну или несколько производных от искомой функции y=y (x). Их можно записать в виде

Где х - независимая переменная.

Наивысший порядок n входящей в уравнение производной называется порядком дифференциального уравнения.

Методы решения обыкновенных дифференциальных уравнений можно разбить на следующие группы: графические, аналитические, приближенные и численные.

Графические методы используют геометрические построения.

Аналитические методы встречаются в курсе дифференциальных уравнений. Для уравнений первого порядка (с разделяющимися переменными, однородных, линейных и др.), а также для некоторых типов уравнений высших порядков (например, линейных с постоянными коэффициентами) удается получить решения в виде формул путем аналитических преобразований.

Приближенные методы используют различные упрощения самих уравнений путем обоснованного отбрасывания некоторых содержащихся в них членов, а также специальным выбором классов искомых функций.

Численные методы решения дифференциальных уравнений в настоящее время являются основным инструментом при исследовании научно-технических задач, описываемых дифференциальными уравнениями. При этом необходимо подчеркнуть, что данные методы особенно эффективны в сочетании с использованием современных компьютеров.

Простейшим численным методом решения задачи Коши для ОДУ является метод Эйлера. Рассмотрим уравнение в окрестностях узлов (i=1,2,3,…) и заменим в левой части производную правой разностью. При этом значения функции узлах заменим значениями сеточной функции:

Полученная аппроксимация ДУ имеет первый порядок, поскольку при замене на допускается погрешность.

Заметим, что из уравнения следует

Поэтому представляет собой приближенное нахождение значение функции в точке при помощи разложения в ряд Тейлора с отбрасыванием членов второго и более высоких порядков. Другими словами, приращение функции полагается равным её дифференциалу.

Полагая i=0, с помощью соотношения находим з значение сеточной функции при:

Требуемое здесь значение задано начальным условием, т.е.

Аналогично могут быть найдены значения сеточной функции в других узлах:

Построенный алгоритм называется методом Эйлера

Рисунок - 19 Метод Эйлера

Геометрическая интерпретация метода Эйлера дана на рисунке. Изображены первые два шага, т.е. проиллюстрировано вычисление сеточной функции в точках. Интегральные кривые 0,1,2 описывают точные решения уравнения. При этом кривая 0 соответствует точному решению задачи Коши, так как она проходит через начальную точку А (x 0 ,y 0). Точки B,C получены в результате численного решения задачи Коши методом Эйлера. Их отклонения от кривой 0 характеризуют погрешность метода. При выполнении каждого шага мы фактически попадаем на другую интегральную кривую. Отрезок АВ - отрезок касательной к кривой 0 в точке А, ее наклон характеризуется значением производной. Погрешность появляется потому, что приращение значения функции при переходе от х 0 к х 1 заменяется приращением ординаты касательной к кривой 0 в точке А. Касательная ВС уже проводится к другой интегральной кривой 1. таким образом, погрешность метода Эйлера приводит к тому, что на каждом шаге приближенное решение переходит на другую интегральную кривую.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Полезные свойства груздей для человека Полезные свойства груздей для человека Бездрожжевые медовые булочки с корицей Бездрожжевые медовые булочки с корицей Сон во сне: что означает такое сновидение Сон во сне: что означает такое сновидение